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Abstract
Errors in reference generation and resolu-
tion can occur if a dialogue agent reasons
incorrectly about their partner’s perspective.
We present, in a collaborative and visually
grounded setting, a dialogue planner that in-
fers its partner’s perspective to produce refer-
ring expressions that the partner resolves cor-
rectly. The dialogue planner models the part-
ner perspective as a latent variable, embed-
ded in a partner model that is used for both
model-based planning and incorporating ev-
idence from partner responses. We validate
our approach on ONECOMMON, a challeng-
ing dialogue game where players have large
differences in their perspectives. In symbolic
selfplay, where agents partner with a copy of
themselves using symbolic communication, the
dialogue planner has promising performance,
winning 85.2% of games.

1 Introduction

Ambiguity is a key impediment to collaborative
dialogue that makes linguistics actions, such as ref-
erence resolution and generation, difficult to exe-
cute. One cause of ambiguity in a grounded setting
is differences in perspectives (Brown-Schmidt and
Hanna, 2011). Agents that incorrectly assume their
partner shares their perspective may make errors
in reference generation and resolution. We refer
to ambiguity induced by different perspectives as
perspective-dependent ambiguity.

Figure 1 provides an example from ONECOM-
MON, a collaborative reference game with a high
degree of perspective-dependent ambiguity (Uda-
gawa and Aizawa, 2019). An agent and partner
are given different but overlapping views of a game
board and must jointly identify a shared dot through
dialogue. Perspective dependent ambiguity stems
from the different but overlapping views, and the
degree of ambiguity depends on the number of
overlapping dots. In this example, the agent’s de-
scription (one large black dot) is specific in their

A: I have one large black dot by itself. Do you have it?
P: Yes, I do have that.
A: Let’s pick that one.
P: <select> red
A: <select> blue

Figure 1: An example of perspective-dependent ambi-
guity from a dialogue agent and human partner playing
ONECOMMON, taken from the evaluation of Fried et al.
(2021). The players have different but overlapping cir-
cular views of a shared board, which contains dots of
different shades, shapes, and sizes. The agent and part-
ner must collaborate through dialogue in order to find
and select a shared dot. This dialogue ends in failure,
as the agent and partner did not account for perspective-
ambiguity and prematurely selected different dots.

view, but actually resolves to a different dot in their
partner’s view — unknown to both the agent and
partner. The incorrect resolution and confirmation
have an immediate irrevocable consequence: The
agent and partner select different dots, failing the
game.

This false positive confirmation results from an
egocentric heuristic (Keysar et al., 2000). Agents
utilizing an egocentric heuristic resolve referring
expressions based mainly on their own perspective,
failing to account for the fact that the perspectives
have partial overlap and there are unshared items



which cannot be observed by the agent. While cog-
nitively cheap, the egocentric heuristic can lead to
systemic errors. Such errors are more pronounced
with larger differences in perspectives, resulting in
larger degrees of perspective-dependent ambigu-
ity. Errors of this form can result in irrevocable
mistakes that do not get corrected in follow-up in-
teractions (Keysar et al., 2000).

In this work, we incorporate the partner’s per-
spective into a collaborative dialogue system. Our
approach centers on a partner model that predicts
the partner’s response given a question from the
agent and the partner’s unobserved perspective,
modeled as a latent variable. The partner model
reasons explicitly over shared and unshared aspects
of the partner perspective, marginalizing over the
unshared aspects. The agent uses the partner model
to plan symbolically, asking maximally informative
questions by maximizing the expected information
gain with respect to the latent partner perspective.
After observing the partner’s response to the utter-
ance, the agent uses the partner model to conserva-
tively update its belief over shared perspective.

Experiments show that planning through the part-
ner model outperforms a state-of-the-art fully su-
pervised dialogue agent (Fried et al., 2021). The
supervised approach chooses plans based on an
egocentric heuristic, and is limited by the strategies
demonstrated in its training data. When applied to
ONECOMMON, our approach utilizes richer plans
than those demonstrated by humans and achieves a
symbolic1 selfplay success rate of 85.2%, a large
improvement over the prior state-of-the-art lan-
guage selfplay success rate of 62.4% (Fried et al.,
2021).

2 Related work

Perspective in common ground The study of
perspective and its influence on common ground,
the shared knowledge between dialogue agents, has
its roots in pragmatics and linguistics (Stalnaker,
1970; Clark and Marshall, 1981; Clark et al., 1983).
Behavioural experiments studying the egocentric
heuristic found that it can lead to irrevocable errors
in human studies (Keysar et al., 2000). Computa-
tional work by Liu et al. (2021) and Doğan et al.
(2020) utilize perspective to generate and under-
stand referring expressions in a fully shared envi-

1Symbolic selfplay for ONECOMMON allows agents to
directly communicate the symbolic representation of plans
instead of describing them in natural language.

ronment, but from different locations. In contrast
to these works, where the perspective of the partner
is known and conditioned on, in our setting the
partner perspective is inferred and the environment
is partially shared between partners.

Perspective captures more than just spatial prop-
erties. Partner capability was considered in the con-
text of reference games (Corona Rodriguez et al.,
2019), where partner capabilities such as color-
blindness were inferred in a single-turn visual ref-
erence game. While their approach did not model
partner perspectives, we propose to directly model
the partner perspectives as a latent variable.

Informative question generation Work in ques-
tion generation formulates information-seeking
conversation as a partially observable Markov de-
cision process. There is one information seeker
and one information holder. Methods use a single-
turn partner-model heuristic to generate questions
(Rao and III, 2018; Yu et al., 2019). In this setting,
the unobserved target referent is the only source
of partial observability, meaning that information
exchanged is reliable up to errors in language. In
contrast, the different perspectives in ONECOM-
MON and resulting perspective-dependent ambigu-
ity have a large effect on communication, often
turning unambiguous utterances in the agent’s per-
spective into ambiguous ones for the partner.

Task-oriented dialogue Task-oriented dialogue
often uses multi-turn model-based planning. Here
planning is performed in the space of language via
rollouts or tree-search (Lewis et al., 2017; Yarats
and Lewis, 2017; Shridhar and Hsu, 2018; Jang
et al., 2020). While we use a single-turn planning
heuristic, our focus on improving partner models
is complementary to multi-turn planning and can
be combined in future work.

Reference generation There is a long line of
work on referring expression generation (Heeman,
1991; Dale and Reiter, 1995; Jordan and Walker,
2005; Krahmer and van Deemter, 2012; Takmaz
et al., 2020, inter alia), particularly in grounded set-
tings (Dale and Viethen, 2009; Mao et al., 2016; Yu
et al., 2017; Takmaz et al., 2020, inter alia). The
OneCommon (Udagawa and Aizawa, 2019) dia-
logue setting poses challenges for generation due to
its partial observability and the non-identical views
of its participants. Our method is most closely re-
lated to the state-of-the-art approach to ONECOM-
MON (Fried et al., 2021) which forms the backbone



of our method. We focus on relaxing the egocentric
assumptions of this method by incorporating sym-
bolic information-seeking planning and generation.

3 Partner Modeling in Reference Games

Collaborative reference games pair an agent and a
partner in order to agree on a shared object through
natural language dialogue. At each turn, the agent
or partner may decide to terminate the game and
make a selection. Once either the agent or their part-
ner terminates, the other player must also act (with-
out observing the other’s choice). If both agent and
partner agree, both win; otherwise, both fail.

Our approach to reference games separates plan-
ning of utterances (choosing what to talk about)
from surface realization (choosing how to say it).
At each turn, our agent produces an utterance plan
x by using a partner model, which simulates the
partner’s possible responses, y, given their hidden
perspective, z. The agent uses the partner model
to infer the partner’s perspective and predict the
partner’s responses to the agent’s plans. We first
give an overview of the partner model and planning
procedure in this section.
Partner model We model the partner’s perspective
as a latent variable, infer the value for this variable
over the course of a game, and use it to plan gen-
eration. This contrasts with a typical egocentric
heuristic, as used in Fried et al. (2021), which as-
sumes the partner’s perspective is identical to the
agent’s.

The partner model predicts a distribution over
the partner response y given the agent plan x under
the latent shared perspective z, and decomposes as:

p(y | x) =
∑
z

p(y | x, z)p(z).

Planning The agent uses the partner model to
plan what to say next, by choosing the plan x that
maximizes the expected information gain (Lindley,
1956) about the shared perspective z, defined as

argmax
x

H[z]− Ey|x [H[z | x, y]] ,

where H[z] is the entropy of the prior2 and H[z |
x, y] the posterior, which requires marginalizing
over z.

2The prior entropy H[z] in the definition of information
gain is constant with respect to the plan x, and can be dropped
from the objective.

Belief update After observing the partner response
y, the agent updates its belief p(z) over the shared
with Bayes’ rule:

p(z | x, y) = p(y | x, z)p(z)/
∑
z

p(y, z | x)

This is performed iteratively after each turn, and
requires marginalizing over possible shared per-
spectives.
Selection After gathering information through plan-
ning and incorporating information through belief
updates, the agent must decide when it has built
enough common ground, collaboratively identify-
ing a shared dot with its partner. We set a thresh-
old on the belief entropy, H[z], which determines
when the agent should transition from information
gathering to ending the game.

4 Planning in ONECOMMON

We focus on applying partner modeling to
ONECOMMON (Udagawa and Aizawa, 2019),
which represents a class of collaborative reference
games (He et al., 2017; Haber et al., 2019) where
only a subset of each player’s perspective is shared,
resulting in perspective-dependent ambiguity.

In ONECOMMON, the agent’s known perspective
D consists of 7 dots in its view. Each dot has a set
of features: size, color, and position in the 2D plane.
All features are continuous. The main challenge
of the game is that the partner perspective is also
a view of 7 dots, Between 4–6 of those dots are
shared with the agent perspective which we denote
as the shared perspective z. Additionally there are
a set of unshared dots u the fill out the partner
perspective. An example is given in Figure 2. Note
that a smaller number of shared dots increases the
likelihood that plans get misresolved to unshared
dots, increasing perspective-dependent ambiguity.

The agent communicates with the partner by
producing an utterance plan, x, which it then de-
scribes in natural language. This plan is a subset of
the dots in the agent view, x ⊆ D, that the agent
will ask the partner about. The partner gives a re-
sponse y to the plan x, given their perspective z. In
ONECOMMON, the partner responds in natural lan-
guage; however, the partner model only models the
partner response as a confirmation y ∈ {YES, NO},
obtained by classifying natural language responses.

Exact planning is intractable because the objects
in the partner perspective have continuous-valued
features. In this section, we describe simplifying



u

z

D x

Do you have a triangle of one gray dot ...

y = NO

Figure 2: In ONECOMMON, the agent’s perspective D
is represented by the large blue circle, and the partner’s
unobserved perspective by the red. The shared dots z
are in both perspectives, while the unshared dots u are
only in the red circle. The agent plan x is given by the
dots in the box, and also described in language. The
partner response y is a binary confirmation.

assumptions for the partner model and inference
procedure that make planning tractable.

4.1 Partner model

We build a partner model by factoring the shared
perspective z and partner response y as illustrated
in Figure 2. Formally,

p(y | x) =
∑
z

p(y | x, z)p(z)

=
∑
z,u

p(y | x, z, u)p(z)p(u),

where we introduce the latent variable u represent-
ing the unshared dots in the partner perspective.

The shared dot prior, p(z), is a distribution over
subsets of D, indicating which dots in the agent
perspective D are shared with the partner. The
model p(z) is initially uniform over dot subsets at
the start of a game, but is updated given evidence
from the partner response y at the end of each turn,
p(z | x, y). For notational simplicity we focus on
the first turn.

The unshared dot prior, p(u), is a distribution
over the remaining partner dots. Since the dots in u
are unobserved by the agent, we parameterize p(u |
s) using a uniform distribution over discretized
features for each dot. We ignore spatial features

for dots in u and discretize the other originally
continuous features: size and color.3

The confirmation model, p(y | x, z), checks
whether a partner will confirm or deny the agent
plan. The partner confirms if they are able to re-
solve the plan x to their perspective. Given a fully
observed z and u, resolution of a plan x is per-
formed by matching the features of x to z and u.
There are no trained parameters in resolution, as it
depends only on the features of dots in x, z, and
u. See Appendix A for the details of feature-based
resolution.

In order to avoid jointly enumerating z and u, the
model reasons separately about z and u by making
the simplifying assumption that plans are fully in z
or u. This means that the model will deny if part
of x is in z, while the remainder is in u (and x is
not fully contained in either z or u):

p(y = NO | x) =
∑
z,u

p(y = NO | x, z, u)p(z, u)

=
∑
z

p(y = NO | x, z)p(z)

·
∑
u

p(y = NO | x, u)p(u).

Given the unsuccessful resolution of x to both z
and u, the partner denies accurately with probabil-
ity θ, a hyperparameter.

4.2 Inference

During inference, we need to compute p(y | x)
for all plans x, which can be done in two steps:
First, we marginalize over the unshared dots u.
This marginalization can be expressed in closed
form. For the details, see Appendix B. Second, we
marginalize over the possible set of shared dots z.
The computational cost of marginalization is the
size of the power set of D, O(2|D|).

We utilize this distribution to compute the poste-
rior on the shared perspective z, after observing a
partner response to a plan,

p(z | x, y) = p(z, y | x)
p(y | x)

.

This posterior then allows us to perform optimiza-
tion over plans with respect to the expected infor-
mation gain, as well as update our beliefs given the
partner response.

3We discretize size and color uniformly into 3 buckets
based on their absolute range across ONECOMMON.



Planning Planning optimizes the expected infor-
mation gain with respect to the shared perspective
z:

argmin
x

Ey|x [H(z | x, y)] .

Computing p(y | x) has cost O(2|D|), while there
are also O(2|D|) plans.4 As a result, optimizing
this objective takes O(22|D|) computation, and is
performed in less than one second on CPU.

Belief update The belief update directly uses
the posterior distribution p(z | x, y), as described
in Section 3.

During gameplay in ONECOMMON, the agent
either directly observes the symbolic response y
or receives a description of y in natural language.
In order to process the natural language dialogue,
we use a classifier to extract y from natural lan-
guage. Additionally, the partner can mention dots
of their own, either symbolically or described in
text. The agent incorporates partner mentions into
its belief by treating them as a confirmed plan. We
use another classifier to extract partner mentions
from text. We give the details of both the response
and mention classifiers in Section 5.

Selection To determine when to select a dot, the
agent uses a threshold on the entropy H[z], given
by the hyperparameter τ . The agent them commu-
nicates which dot to select by describing the config-
uration of four dots with the highest marginal prob-
ability of being shared, as well as the dot within
that configuration that is most likely to be shared.
The agent then selects the described dot.

5 Experimental setup

We evaluate our method, the Partner Planner, on
the ONECOMMON dataset (Udagawa and Aizawa,
2019). We perform two evaluations: First, we eval-
uate the number of incorrectly resolved plans gen-
erated by the Partner Planner given a static, natural
language dataset. Second, we evaluate the Partner
Planner in dynamic, symbolic selfplay.

Static plan evaluation In order to show that re-
solving perspective-dependent ambiguity reduces
errors, we perform automatic evaluation of plans
by evaluating whether the agent plan is incorrectly
resolved by the partner model. A plan is incor-
rectly resolved if the plan is not empty and the part-
ner does not resolve the plan to any of the agent’s

4Plans x are subsets of D that the agent would like to ask
the partner about.

intended referents. We evaluate this without lan-
guage by directly feeding the feature representation
of plans from the agent to the partner, who is a Part-
ner Planner.

We generate plans given natural language dia-
logue history from a validation split of ONECOM-
MON following prior work (Fried et al., 2021).5

For each turn in the human-generated dialogue,
we generate a plan from our model and label that
plan as either a success or failure using the proce-
dure above. We evaluate on 518 validation games,
which have different numbers of shared dots: ei-
ther 4, 5, or 6. Fewer shared dots results in more
perspective-dependent ambiguity.

Symbolic selfplay We also evaluate the Partner
Planner on symbolic selfplay, where it plays the
full ONECOMMON game with a copy of itself using
symbolic communication. We evaluate only on the
setting with the most perspective-dependent ambi-
guity, 4 shared dots. In symbolic selfplay, agents
must perform planning, belief updates, and selec-
tion. The Partner Planner is able to exactly com-
municate confirmations and dot features (bucketed
size, color, and relative positions). We compare the
game success rate of the Partner Planner to success
rate of the baseline by (Fried et al., 2021) and hu-
man performance on language selfplay. Language
inherently has more noise than symbolic representa-
tions, meaning symbolic selfplay is an upper bound
on performance with language.

Systems We focus evaluation on the Partner
Planner, which reasons about shared and unshared
dots. We consider an ablated version, which does
not model unshared dots.

As a baseline, we compare to an agent from
prior work, which does not account for perspective-
dependent ambiguity (Fried et al., 2021). The
baseline model chooses plans based on the round-
trip probability from an utterance back to the plan,
which is an egocentric heuristic and also does not
account for uncertainty over shared dots. The base-
line agent chooses 8 plans and 64 utterances for
each plan, then chooses the plan and utterance
pair with the highest probability of recovering the
plan give the utterance using a reference resolution
model applied only to the agent’s own context.

Hyperparameters For the Partner Planner, we
set the response faithfulness probability θ = 0.95.

5Prior work used 10-fold cross-validation. We use models
from prior work trained on one fold, and evaluate our approach
on the validation set for that fold. In particular, we use fold 1
from prior work.



# shared

Agent 4 5 6 Total

Partner Planner 26 12 5 43 (12)
-unshared 70 61 22 153 (22)

Fried et al. (2021) 28 17 4 49 (17)

Table 1: The number of incorrectly resolved plans in
automatic feature-based evaluation on 519 static val-
idation dialogues (2,341 turns). The total number of
errors made in the first turn of a dialogue is shown in
parentheses for each agent. A lower number of incorrect
plans is better.

We determine the selection entropy threshold by
running grid search over τ ∈ {1, 1.5, 2} on sym-
bolic selfplay, and pick the value with the highest
success rate.

The partner response classifier is a RoBERTa
model (Liu et al., 2019), with a second stage of fine-
tuning performed on 147 annotated dialogue turns.
We annotate the text each turn as a confirmation,
denial, or no response. The model is originally
fine-tuned on sentiment (Heitmann et al., 2020).

For mention classification from text, we use a
mention prediction network from past work (Fried
et al., 2021). The mention prediction network ex-
plicitly models relationships between mentions us-
ing a conditional random field with neural poten-
tials.

6 Results

Static plan evaluation Directly modeling and
marginalizing over unobserved partner perspective
results in fewer errors than the egocentric heuristic
from Fried et al. (2021), obtaining a 12% reduction
in errors as shown in Table 1. Additionally, the
number of incorrectly resolved plans from Planner
is much lower than an ablated planner that does not
model unshared dots, a 72% reduction.

We hypothesize that the baseline model of Fried
et al. (2021) makes fewer errors because it is able
to repeat plans mentioned in the static dialogue.
The Partner Planner does not often repeat plans,
as there is little information gained. When re-
stricted to the plan proposals from the first turn
of a static human-demonstrated dialogue, where
no plans can be copied, the Partner Planner outper-
forms the baseline by a larger margin, as shown in
Table 1.

We note that the absolute number of resolution

Agent Success Avg # turns

Partner Planner 85.2% 10.10
-unshared 77.0% 11.69

Fried et al. (2021) 62.4% -
Human 65.8% 4.97

Table 2: The success rate of different agents in selfplay
on the hardest setting of ONECOMMON, with 4 shared
dots. The Partner Planner and ablated version communi-
cate symbolically, while the Fried et al. (2021) baseline
and human performance use language. A higher suc-
cess rate is better. The human performance is from the
ONECOMMON dataset (Udagawa and Aizawa, 2019).

errors is small relative to the total number of turns.
We hypothesize that this is because of the nature of
static evaluation. Static evaluation considers next
step plan proposals given human dialogue, prevent-
ing agents from steering the dialogue themselves.

Symbolic selfplay The Partner Planner achieves
strong performance in symbolic selfplay, as shown
in Table 2. The ablated version, which does not
model unshared dots, also performs well, but worse
than the full Partner Planner. This demonstrates the
utility of modeling unshared perspective.

Both the full and ablated Partner Planner outper-
form the baseline of Fried et al. (2021) and coached
human performance from the training data of Uda-
gawa and Aizawa (2019), demonstrating the utility
of partner modeling. Much of this success comes
from the ability to control the belief entropy selec-
tion heuristic, as shown by the performance of the
ablated Partner Planner over human performance.
The selection heuristic encourages the Partner Plan-
ner to be more patient and gather more information
before selecting than most human participants, re-
flected in the average number of turns per game.

7 Future Work

For future work, the current model will be extended
with text generation in order to play ONECOMMON

with humans. Preliminary experiments using utter-
ance generation methods from prior work by Fried
et al. (2021) found that the plans proposed by the
Partner Planner were out-of-distribution for super-
vised methods, resulting in many errors in gener-
ation. Further experiments with a templated gen-
eration system found that the resulting templates
were too difficult to understand for human part-
ners. Future work will experiment with generation
systems that account for utterance processing cost,



balancing the amount of information conveyed and
fluency.

Additionally, the scalability of the method will
be tested on dialogue games with larger environ-
ments.
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A Feature-based resolution

Feature-based resolution featurizes a plan x then
compares the features to all subsets of dots in the
partner domain D. The set of features used for each
plan x is given by the shape and size each dot in
the plan, bucketed into 3 bins based on the range
of each feature. The pairwise positions, limited
to above-left, above-right, below-left, and below-
right, are also contained in the feature set. We
provide an example of feature-based resolution in
Figure 3.

Given a plan x, feature-based resolution must
compare all the features of the plan, of which there
are O(|x|2), to all partial permutations of subsets
size |x| taken from D, of which there are O(|D||x|).
This can be precomputed at the start of a dialogue.

When resolving x to unshared dots, we ignore
spatial features.

a

c

b

Feature representation
Dot 1: Large, dark
Dot 2: Large, dark, below-left Dot 1

Figure 3: An example of feature-based resolution. The
above feature representation for a pair of dots resolves
to dot configurations {(a, b), (a, c), (b, c)}.

B Resolution to unshared dots

The partner model, with the assumption that x can-
not be split between z and u, is given by

p(y = NO | x)

=
∑
z,u

p(y = NO | x, z, u)p(z)p(u)

≈
∑
z,u

p(y = NO | x, z)p(z)p(y = NO | x, u)p(u)

=
∑
z

p(y = NO | x, z)p(z)
∑
u

p(y = NO | x, u)p(u)

=
∑
z

p(y = NO | x, z)p(z)
∑
u

p(y = NO, u | x).

The probability a plan x resolves to the unshared
dots u is∑

u

p(y = NO, u | x) = 1− θ

(
|u|
|x|

)
B2·(|u|−|x|)

B2·|x| ,

where B is the feature bucket size, given |u| ≥ |x|.
This relies on the assumption that spatial features
are ignored when resolving to unshared dots.
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