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Abstract

Commonsense reasoning simulates the human ability to make presumptions about
our physical world, and it is an indispensable cornerstone in building general AI
systems. We propose a new commonsense reasoning dataset based on human’s
interactive fiction game playings as human players demonstrate plentiful and
diverse commonsense reasoning. The new dataset mitigates several limitations
of the prior art. Experiments show that our task is solvable to human experts
with sufficient commonsense knowledge but poses challenges to existing machine
reading models, with a big performance gap of more than 30%. Our code and data
will be released at https://github.com/Gorov/zucc.

1 Introduction

When playing an Interactive Fiction (IF) game, we explore and progress through a fantasy world
by observing textual descriptions and sending text commands to control the protagonist. While
in pure texts, we relate the implicit knowledge of these fantasy worlds with those in our physical
world. For example, we explore unvisited regions by planning over the mentioned locations (spatial
relations); we eat apples to recover health and attack the enemies with swords, but not vice versa
(physical interaction relations); we retrospect the poor choice of breaking the lantern when we find
the protagonist in a dangerous dark wood (cause and effects). Plentiful and diverse commonsense
knowledge from our physical world is encoded in our game playing texts, which inspire this work of
utilizing the IF games to build a new commonsense reasoning dataset.

There has been a flurry of recent datasets and benchmarks on commonsense reasoning [12, 23, 20,
14, 11, 16, 4, 10, 5, 17, 22]. All these existing benchmarks adopt a multi-choice form task. With the
input query and an optional short paragraph of the background description, each candidate forms a
statement. The statement that is consistent with a commonsense knowledge fact corresponds to the
correct answer. We notice some common deficiencies in the construction of these benchmarks. First,
nearly all these benchmarks focus on one specific facet and ask human annotators to write candidates
related to the specific type of commonsense. As a result, the distribution of these datasets is not
natural but biased to a specific facet. For example, most benchmarks focus on collocation, association
or other relations (e.g., ConceptNet [19] relations) between words or concepts [12, 20, 14, 11]. Other
examples include temporal commonsense [23], physical interactions between action and objects [5],
emotions and behaviors of people under the given situation [17], and cause-effects between events
and states [16, 4, 10]. Second, the task form makes them more likely commonsense validation, i.e.,
validation between a commonsense fact and a text statement, but neglecting hops among multiple
facts.1 The limitations above of previous works, namely limitations in distributions of required

∗Equal contribution from the corresponding authors.
1These datasets do contain a portion of instances that require explicit reasoning capacity, especially [4, 10, 5,

17]. Still, many of the instances can be solved with standalone facts.
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commonsense knowledge types and forms of tasks, restricted their potentials. These tasks are naturally
easy to be handled with pre-trained Language Models (LMs) such as BERT [6]. It is mainly because
(1) the narrow reasoning types are easier to be fit by a powerful LM; (2) the dominating portion of
commonsense validation instances are easier to be captured by pre-training if texts on these facts
have presented in pre-training. Additionally, the above limitations naturally lead to discrepancies
between practical NLP tasks that require broad reasoning ability on various facets.

Figure 1: Classic dungeon game Zork1 gameplay
sample. The player receives textual observations de-
scribing the current game state. The player sends
textual action commands to control the protagonist.
Various types of commonsense reasoning are illus-
trated in the texts of observations and commands from
the gameplay interaction, such as spatial relations,
objective manipulation, and physical relations.

Our Contributions To overcome these short-
comings, we derive commonsense reasoning tasks
from the model-based reinforcement learning chal-
lenge of text games. Our work is inspired by re-
cent advances in interactive fiction (IF) game play-
ing [9, 2, 7]. Figure 1 illustrates sample gameplay
of the classic game Zork1.

The research community has recognized several
commonsense reasoning problems in IF game
playing [9], such as detecting valid actions and
predicting the effects of different actions. In this
work, we derive a commonsense evaluation related
to the latter problem, i.e., predicting which is the
most likely observation when applying an action
to a game state.

Our approach of commonsense benchmark con-
struction has several advantages. Specifically, it
naturally relaxes the restrictions in commonsense
types and reasoning forms. First, we relax the
limitation in commonsense types by noticing that
predicting the next observation naturally requires
various commonsense knowledge and reasoning
types. As shown in Figure 1, a primary common-
sense type is spatial reasoning, e.g., “climb the
tree” makes the protagonist up on a tree. An-
other primary type is reasoning with object in-
teractions, such as with relationships, like keys
can open locks; with object’s properties, such as
“hatch egg” will reveal “things” inside the egg;
with physical reasoning, like “burn repellent
with torch” leads to an explosion and kills the
player. The above interactions are much more
comprehensive than the relationships defined in ConceptNet as used in previous datasets. Second, we
enforce the task to have more commonsense reasoning steps over simple commonsense validation. A
large portion of IF game observations are narrative, and the next observation is less likely to be a sole
statement of the action effect, but an extended narrates about what happens because of the effect.2

Our benchmark designs based on the IF games support automatic data generation from multiple
genres and domains, including dungeon crawl, Sci-Fi, mystery, comedy, and horror. From an RL
perspective, our commonsense reasoning task formulation shares the essence of dynamics model
learning for model-based RL solutions, especially those based to next state predictions [15, 8, 18, 1].
As a result, models developed on our benchmarks provide values to both commonsense reasoning
and model-based reinforcement learning.

We introduce a new commonsense reasoning benchmark from four IF games in the Zork Universe,
the Zork Universe Commonsense Comprehension task (ZUCC). Our experiments show that existing
standard models perform poorly on the resulted benchmark, with a significant human-machine gap.
Our way of construction is general and easy-to-implement, thus the dataset is easy to be scaled up
with more text games as long as their simulators and walkthroughs are available.

2For some actions, like get and drop objects, the returns are simple statements. We removed some of these
actions. Details can be found in Section 2.
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2 ZUCC Dataset Construction

We pick games from the Zork Universe that are supported by the Jericho environment [9], namely
zork1, zork3, enchanter, sorcerer,3 to construct our ZUCC dataset. This section first reviews the
necessary definitions in the IF game domain; then describes how we construct our ZUCC dataset as
a forward prediction from the game walkthrough trajectories.

2.1 Interactive Fiction Game Background

Textual Observations and the POMDP Formulation An IF game-playing agent interacts with
the game engine in multiple turns until the game is over or the maximum number of steps is reached.
At the t-th turn, the agent receives a textual observation describing the current game state ot ∈ O
and an additional reward scalar rt indicating the game progress and it sends back a textual command
at ∈ A to control the protagonist.

Trajectories and Walkthroughs A trajectory in text game playing is a sequence of tuples
(ot, at, rt, ot+1) starting with the initial observation o0. We define the walkthrough of a text game as
a trajectory that completes the game progress. Our dataset construction is based on the walkthroughs
since each of them correspond to an entire story and, hence, represents a natural distribution of
commonsense tasks. In this work we use the walkthroughs provided by the Jericho environment for
the selected games.

2.2 Data Construction from the Forward Prediction Task

The Forward Prediction Task We represent our commonsense reasoning benchmark as a next-
observation prediction task, given the current observation and action. The benchmark construction
starts with all the tuples in a walkthrough trajectory, and we then extend the tuple set by including
all valid actions and their corresponding next-observations conditioned on the current observations
in the walkthrough. Specifically, for a walkthrough tuple (ot, at, rt, ot+1, ), we first obtain the
complete valid action set At for ot. We sample and collect one next observation ojt+1 after executing
the corresponding action ajt ∈ At. The next-observation prediction task is thus to select the next
observation ojt+1 given (ot, a

j
t ) from the complete set of next observations Ot+1 = {okt+1,∀k}.4

Data Processing We collect tuples from the walkthrough data provided by the Jericho environ-
ments. We detect the valid actions via the Jericho API and the game-specific templates. Following
previous work [9], we augmented the observation with the textual feedback returned by the command
[inventory] and [look]. The former returns the protagonist’s objects, and the latter returns the current
location description. When multiple actions lead to the same next-observation, we randomly keep
one action and next-observation in our dataset. We leave all the tuples from the zork3 game for
evaluation. We split the walkthrough of zork3, keeping the first 136 tuples as a development set and
the rest 135 tuples as a test set. We remove the drop OBJ actions since it only leads to synthetic
observations with minimal variety. For each step t, we keep at most 15 candidate observations in Ot

for the evaluation sets. When there are more than 15 candidates, we select the candidate that differs
most from ot with Rouge-L measure [13].

Table 1 summarizes statistics of the resulted ZUCC dataset. The number of tuples is much larger
in the test set because there are actions that do not have the form of drop OBJ but have the actual
effects of dropping objects. Through the game playing process, more objects will be collected in the
inventory at the later stages. The test data will be much easier as long as these non-standard drop
actions have been recognized. A similar problem happens to actions like burn repellent that can
be performed at every step once the object is in the inventory. To deal with such problems in the test
set, we finally down-sample these biased actions to achieve similar distributions in development and

3There is an excluded game, spellbreaker, in Jericho that belongs to the Zork Universe. As the study in their
paper shows, the game contains a large portion of non-standard actions that are usages of spells, and handling its
non-standard vocabulary is beyond this paper’s scope.

4Similarly, we can use the backward prediction, i.e., predicting aj
t given ot and ojt+1. Our preliminary study

shows that the backward prediction does not introduce extra challenges compared the forward one. Therefore
we only focus on the latter in the paper.
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Sets #WT Tuples #Tuples before Proc #Tuples after Proc

Train 913 17,741 10,498
Dev 136 1,982 1,276
Test before down-sampling 135 2,087 1,573
Test (final) - - 822

Table 1: Data statistics of our ZUCC task. WT is short for walkthrough. Train set is from the game
Zork1, Enchanter, and Sorcerer. Both dev and test sets are from the game Zork3.

Method Dev Acc Test Acc

Random Guess 10.66 16.42

Match LSTM 57.52 62.17
BERT-siamese 49.29 53.77
BERT-concat 64.73 64.48

Human Average Performance* 86.80 -
Human Expert Performance* 96.40 -

Table 2: Evaluation on our ZUCC data. Human performance (*) is computed on a subset of data.

test sets. We perform down-sampling with rule-based methods. The resulted final version of the test
set is denoted as Test (final) in the table.

Remark on Further Impacts Our benchmark design opens opportunities beyond commonsense
evaluation. For example, the form of our tasks, compared to the relevant tasks of next-sentence
generation, such as the SWAG [22], introduces actions as intervention, thus encourage causal
reasoning. Therefore it has a potential impact on causal knowledge acquisition. On the other hand,
the partial observability nature of IF games makes ot and ajt not sufficient for predicting ojt sometimes.
Therefore our task encourages the development of structured abstract representations to summarize
the history [2, 3].

3 Experiments

We first benchmark the state-of-the-art models for natural language inference on our dataset, with
and without pre-trained Language Models (LMs). Then we conduct a human study on a sub-set of
our development data to quantitatively measure the human performance and the human-machine gap.

Baselines We compare the following baselines on the ZUCC dataset. In the model descriptions,
the notations ot, at of observations and actions represent their word sequences.

•Match LSTM The neural attention model was proposed in [21], commonly used in natural language
inference as baselines. Specifically, we concatenate ot and at separated by a special split token as
the premise and use the ojt+1 as the hypothesis. The matching scores for all ojt+1 are then fed to a
softmax layer for the final prediction.

• BERT Siamese The Siamese model uses a pre-trained BERT model to encode the current
observation-action pair (ot, at) and candidate observations õjt+1, j = 1, ..., N . All inputs to BERT
start with the “[CLS]” token. ot and at are concatenated by a “[SEP]” token:

ht = BERT([ot, at]), h̃j
t+1 = BERT(õjt+1),

lj = f([ht, h̃
j
t+1,ht − h̃j

t+1,ht ∗ h̃j
t+1]),

where [·, ·] denotes concatenation. ht and h̃j
t+1 are last layer hidden state vectors that correspond to

the “[CLS]” token. Each candidate next-observation is scored by an output function f , and the logits
are normalized by the softmax function. We use the cross-entropy loss as the training objective.

• BERT Concat It represents the standard pairwise prediction mode of BERT. We concatenate ot and
at with a special split token as the first segment and treat õjt+1 as the second. We then concatenate the
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two with the “[SEP]” token. We have a matching score for each ojt+1 with a linear mapping from the
hidden state of the “[CLS]” token, and then feed the scores to a softmax layer for the final prediction.
This model is much less efficient than the former two; thus, it is not practical in IF game playing.
Here we report its results for reference.

Implementation Details We experimented with training the three baselines on both full training
tuples (biased training) and the processed training set (de-biased training). We reported the best
development set performance for each model.

Results Table 2 summarizes the model performance. All three baselines manage to learn decent
models, i.e., significantly better than a random guess. For both Match LSTM and BERT-Siamese,
the best development performance was found with de-biased training because this training setting is
more consistent with the evaluation scenarios.

There is an exception for the BERT-Concat because the model is not learning in the de-biased training
setting, i.e., the training accuracy stays around 10%, the level of a random guess. A possible reason is
that the BERT-Concat model works directly on a complicated concatenated string of multiple types
of inputs. Therefore it is challenging for it to distinguish the structures of input/output observations
and actions. For example, it may not learn which parts of the inputs correspond to inventories. To
make the model work, we first pre-train the BERT-concat model on the biased training data until
converging, then fine-tune the model on the de-biased data. This procedure finally gives the best
performance on our ZUCC.

Although the baselines are making progress, as shown in our human evaluation, the best development
accuracy (64.73%) is still far from human-level performance. Compared to the human expert’s near-
perfect performance, the substantial performance gaps confirms that our ZUCC captures challenging
commonsense understanding problems.

Human Evaluation We present to the human evaluator each time a batch of tuples starting from
the same observation ot, together with its shuffled valid actions At+1 and next observations Ot+1.
The evaluators are asked to read the start observation ot first, then to align each o ∈ Ot+1 with
an action a ∈ At+1. Besides, for each observation o, besides guessing the action’s alignment, the
subjects are asked to answer a secondary question: whether the provided ot, o pair is sufficient for
them to predict the action. If they believe there are not enough clues and their action prediction is
based on a random guess, they are instructed to answer “UNK” to the second question.

We collect two sets of human predictions on 250 samples. The first set is annotated by one of the
co-authors who have experience in interactive fiction game playing (but have not played Zork3
before). We denote the corresponding result as Human Expert Performance. The second set is
annotated by three of our co-authors who have never played IF games. The corresponding result
is denoted as Human Average Performance. The corresponding accuracy is shown in Table 2. The
human expert performs more than 30% higher compared to the machines. It is also interesting to see
that even the human annotators who do not play IF games much can outperform the machine with
more than 20%. Since these annotators have not been trained for this task, their performance could
represent human-level domain transferability with commonsense knowledge.

Finally, the annotators recognized 10.0% cases with insufficient clues, indicating an upper-bound of
methods without access to history observations.5

4 Conclusion

Interactive Fiction (IF) games encode plentiful and diverse commonsense knowledge of the physical
world. In this work, we derive a commonsense reasoning benchmark ZUCC from IF games in the
Zork Universe. Taking the form of predicting the most likely observation when applying an action to
a game state, our automatically generated benchmark covers comprehensive commonsense reasoning
types such as spatial reasoning and object interaction, etc. Our experiments on ZUCC show that
current popular neural models have limited performance compared to humans.

5Humans can still make a correct prediction by first eliminating most irrelevant options and then making a
random guess.
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