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Human language describes what we do in the world, as well as why and how we do it, with remarkable
richness and flexibility. Building computational systems that actually leverage language as we do –
capable of effortlessly understanding existing words in the context of both new sentences, and new
states of the world – poses a fundamental challenge for formally representing linguistic meaning:
how is that we can both generalize the meanings of words so abstractly, across such a wide range
of different environmental and linguistic contexts, and yet also understand language so concretely,
so that we can make subtle, grounded distinctions contingent on how particular sentences refer to
particular worlds? Consider a significant subset of the language used in most text games, which we
reuse to describe many arcade games and even highly realistic 2D and 3D simulators: the apparently
concrete space of language that describes physical actions and goals, including action verbs like
walk, run, jump, or simply move. Children learn motion verbs like jump pretty early on, as verb
learning goes [10]. But like other motion verbs, we can reuse a verb like jump to refer, or extend,
freely and abstractly across an enormous set of different and specific motions, spanning a wide range
of actors, real and imagined environments, and goals. A competent language user can use jump in
reference to motions performed by people, four-legged cats, single-legged robots, and likely, to aliens
with wildly different bodies that we had never seen jump in the world before; at the same time, we
can imagine the quirks of particular jumps, the differences between an elephant jumping, or a kid
on a pogo stick, or a skier. We know how to extend physical action language we used in our own,
three-dimensional world to describe motions in environments that do not look or behave physically
like this one, or even obey continuity in space and time–after all, we can talk about jumping in 2D
video games with the barest form of physics, like Frostbite and Qbert, or in games like Super Mario,
where it is possible to jump off of mid-air; and in a purely text-based game, we might not think twice
about jumping from room to room, and then from planet to planet. By the time we reach adulthood,
what we know about the meanings of physical actions allows us to extend the same meanings to even
highly abstract contexts–once we could describe being in a Zoom room, we could talk about jumping
out of them. The meaning of jump extends to unite them all.

Distributional neural models of word meaning, by contrast, have certainly enabled remarkable
advances across many disparate tasks, some of which relate linguistic meaning to the world: we can
now predict token sequences across long contexts and even across languages [3]; we can produce
linguistic descriptions of certain aspects of perceptual inputs [12]; and we can even follow linguistic
instructions, allowing for some compositionality, in specific grounded domains [4, 14, 9, 6]. But
where human language is remarkable for its domain generality–what we know about words extends
across all of these different environments, and the many concrete action instances and goals within
them–nearly all recent approaches to modeling meaning support only extremely domain-limited
reasoning: understanding grounded language often means solving particular tasks in the context of a
specific model of the world. Even for a single verb like jump, on the other hand, the "grounding"
challenge that even children can solve permits:

1. Understanding the same word across different environments that can vary dramatically in
their world state abstraction (consider the differences between jumping realized in a text
game like Zork, a stylized Atari game like Qbert, a 2D physics-based platformer like Mario,
and highly realistic legged robotic simulators); real or imagined contexts with varying
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underlying dynamics (we can imagine jumping over buildings in a single bound); and
arbitrary bodies with different motor constraints (we point out spiders jumping, as well as
knights in a game of chess); and

2. Understanding the same word in the context of a remarkable range of arbitrary and novel
linguistic goals (consider reasoning about jumping to a location above me, over something
tall, off of or onto a shaky platform, or to launch a water balloon off of a seesaw);

in order to support a rich range of grounded inferences that include, but are not limited to: (i)
recognizing instances of the verb across different and entirely new situations, as well as judging how
good an example of the action they are; (ii) imagining and reasoning about relevant aspects of the
verb, conditioned on the linguistic and environmental context; (iii) executing instructions containing
the verb; and (iv) planning with the verb quickly towards arbitrary goals, which require reasoning
about different aspects of meaning that themselves vary in their grounding from context to context.

Solving tasks in text games alone may be challenging enough for many distributional and statistical
approaches to meaning – much like the challenge of learning representations suitable for recognizing
and understanding language used in the context of particular grid worlds, or arcade games [2], or
3D physical simulations [15]. But the rich variance in world state abstraction and dynamics across
these very different games suggests that a more appropriate grounded language challenge–if we
wish to capture the simultaneous cross-domain generalizability and contextual specificity of human
language–should look more like emulating the natural program synthesis challenge faced by the
game engineer attempting to implement a meaningful version of any given verb within a given game:
how does the game engineer represent their general knowledge of words (like jump) that allows them
to abstractly and generally transfer its meaning across a wide variety of existing and entirely new
games; and how does that general knowledge relate to the particular implementation they design for a
given actor, environment, and constrained set of game goals – a representation that by construction
must allow other humans to effectively recognize, plan around, and execute the action in a game
world? We propose a roadmap for a grounded language challenge domain, and a research program,
motivated by this radical, distinctly language-based, and more human form of generalization:

1. Developing a dataset that requires understanding words across very different environments,
in sentences that make very different contextual demands on word meaning. Ideally, we
suggest a dataset comprised of a diverse set of game environments explicitly designed to
span grains of spatiotemporal state abstraction (text games, stylized turn-taking games, 2D
platformers, and physically realistic simulators), but that expose a unified interface over the
world state for introducing code that implements new ’action’ representations, allowing for
the same synthesis challenge faced by the game engineer. Further, we suggest developing
a challenge set of linguistic planning queries, containing verbs that can be feasibly imple-
mented across game environment used in the context of a diverse range of linguistic goals;
and ideally, a gold set of demonstrations, produced by expert implementations of each action,
for verbs in each game. While this ideal challenge would require a significant engineering
effort–both to construct the environments, and to engineer ground truth demonstrations–we
suggest that many of these features could be captured in domain with a smaller scope but
similar breadth: one that requires reinterpreting the same physical action verbs as enacted
by agents that move in concretely different ways, depending on their skeletal structures and
the underlying physical dynamics of their environment. A labeled dataset of motion verbs
instantiated across simulated agents with a diverse set of skeletal morphologies (for instance,
the differing robot morphologies, like quadrupeds and humanoid bipeds, in the MuJoCo
simulation framework, as well as more ‘abstract’ morphologies like the cube-shaped figures
in Minecraft) and enacted under varying physical dynamics (for example, by modifying
the underlying physics engine to reparameterize the gravity) would offer a difficult gen-
eralization domain for representations of physical verb meaning that are either entirely
abstract–divorced from grounding, or only defined in relation to other words–or entirely
concrete, coupled directly to specific motion instances and their environments.

2. Developing evaluations that require both wide and abstract language generalization, and
concrete and grounded realization. We suggest two tasks based on natural forms of gener-
alization that humans can perform when they know the meanings of words, which could
be instantiated in the physical action verbs dataset we have described: label extension,
which asks whether a particular verb label should be applied to a new motion performed
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by an unseen actor (and which can be evaluated as a recognition problem, against human
judgments based on the verb label and their observation of grounded motion examples); and
grounded action transfer, which asks how a given verb label can be performed by an unseen
actor (and which can be evaluated by comparing to gold actor-specific motion policies, as
well as against human judgements about whether the verb label should be extended to a
machine action).

3. Developing semantic representations with the explicit aim of explaining both the abstract
and grounded functions of verb meaning, and how they relate to each other. We believe
that an engineering-oriented approach to interpreting the language of physical actions and
goals should draw inspiration from, build on, and integrate advances in representations
designed for planning, simulating, and executing actions in real and simulated worlds: in
particular, representations for forward execution (e.g. animation, game actions, and robotics
control) and planning (e.g. classical planning and hybrd task and motion planning) that
are explicitly hierarchical, and that mix abstract semantic representations with physical
geometric, kinematic, and dynamic constraints [8, 11, 16, 7]. We do not believe that these
representations should be at odds with advances in distributional semantics. Instead, we
believe that some of the most exciting developments in both grounded language interpretation
[1, 13] and non-linguistic approaches seeking to achieve language-like generalizability [5, 7]
have been driven explicitly by the charge of making action representations more language-
like: capable of capturing the aspects of meaning reused across contexts as different as text
games and physically realistic simulations, while efficiently adapting to the specifics of
each.

One promising approach we suggest in this realm is adopting a representational formalism
more like the framework of abstract interfaces and their concrete implementations used
in object-oriented programming: interfaces declare the existence of placeholder functions
and are specified only based on the relations between them, providing an abstraction barrier
between instances of concrete, executable code that implement them. In a framework
like this one, the ability to extend physical verb labels so freely to new and different
motion instances falls out of the representational flexibility that is explicitly afforded by
an interface definition: interfaces are designed to provide representational independence,
by only specifying placeholder names and relations between them, without committing the
programmer to how those placeholders should be actually concretely realized.
At the same time, our ability to reason about specific, grounded instances of how verbs
should look and behave in the world comes from the way that interfaces are realized into
particular concrete implementations: once a programmer maps placeholder names to specific
code that interprets them, the result is an executable piece of code, such as a concrete motion
objective. This framework also specifies how these two levels should relate to each other in
the generalization tasks we described: verb extension becomes the problem of deciding that
a concrete instance implements a declared interface; action production involves interpreting
the named placeholders in the interface into some concrete realization, such that executing it
in fact satisfies the relational specification.

Indeed, approaches that can be understood through this framework have been described in at
least two research areas interested in modeling generalizable motor actions. In animations for
games and graphics, the idea of semantic motion retargeting [8] asks animators to describe
abstract, relational action specifications like punching using a vocabulary of semantic body
capabilities (like grasper) and prepositional relations (like front or back) that could be
concretized into grounded motion objectives by allowing users to map these semantic names
onto concrete character joints; in robotics, the category-level task manipulation approach
in [7] similarly asks engineers to specify naturalistic goals like put the mug upright on the
table in terms of semantic names for keypoints, like center of handle, that can be grounded
concretely to produce grasping objectives across a wide variety of different object topologies.
We suggest that a representation for many verbs describing physical action language could
draw on this framework in order to meet both computational criteria–wide and abstract verb
extension across many action instances, and grounded action transfer sufficient to simulate
concrete actions in each world context.
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