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Abstract

Interactive Fiction (IF) games with real human-written natural language texts
provide a new natural evaluation for language understanding techniques. IF games
pose language understanding challenges on the human-written textual descriptions
of diverse and sophisticated game worlds and language generation challenges on
the action command generation from less restricted combinatorial space. We take a
novel perspective of IF game solving and re-formulate it as Multi-Passage Reading
Comprehension (MPRC) tasks. Our approaches utilize the context-query attention
mechanisms and the structured prediction in MPRC to efficiently generate and
evaluate action outputs and apply an object-centric historical observation retrieval
strategy to mitigate the partial observability of the textual observations. Extensive
experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of
our approaches achieving high winning rates. 2

1 Introduction

The complexity of Interactive Fiction (IF) games demands more sophisticated Natural Language
Understanding (NLU) techniques than those used in synthetic text games. Moreover, the task of
designing IF game-play agents, intersecting NLU and reinforcement learning (RL), poses several
unique challenges on the NLU techniques. The first challenge is the difficulty of exploration in
the huge natural language action space. Previous approaches, starting with a single embedding
vector of the observation, either predict the elements of actions independently [12, 7]; or embed
each valid action as another vector and predict action value based on the vector-space similarities [9].
These methods do not consider the compositionality or role-differences of the action elements, or the
interactions among them and the observation.

The second challenge is partial observability. The latest observation is often not a sufficient summary
of the interaction history and may not provide enough information to determine the long-term
effects of actions. Previous approaches address this problem by building a representation over past
observations (e.g., building a graph of objects, positions, and spatial relations) [3, 2]. These methods
treat the historical observations equally and summarize the information into a single vector without
focusing on important contexts related to the action prediction for the current observation.

∗ Equal contribution from the corresponding authors.
2 Source code is available at: https://github.com/XiaoxiaoGuo/rcdqn.
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Figure 1: Overview of our approach to solving the IF games as multi-paragraph reading comprehension (MPRC)
tasks.

We propose a novel formulation of IF game playing as Multi-Passage Reading Comprehension
(MPRC) and harness MPRC techniques to solve the huge action space and partial observability
challenges. The graphical illustration is shown in Figure 1. First, the action value prediction
(i.e., predicting the long-term rewards of taking an action) is essentially generating and scoring a
compositional action structure by finding supporting evidence from the observation. We base on
the fact that each action is an instantiation of a template, i.e., a verb phrase with a few placeholders
of object arguments it takes (Figure 1b). Then the action generation process can be viewed as
extracting objects for a template’s placeholders from the textual observation, based on the interaction
between the template verb phrase and the relevant context of the objects in the observation. Our
approach addresses the structured prediction and interaction problems with the idea of context-
question attention mechanism in RC models. Specifically, we treat the observation as a passage
and each template verb phrase as a question. The filling of object placeholders in the template thus
becomes an extractive QA problem that selects objects from the observation given the template.
Simultaneously each action (i.e., a template with all placeholder replaced) gets its evaluation value
predicted by the RC model. Our formulation and approach better capture the fine-grained interactions
between observation texts and structural actions, in contrast to previous approaches that represent the
observation as a single vector and ignore the fine-grained dependency among action elements.

Second, alleviating partial observability is essentially enhancing the current observation with poten-
tially relevant history and predicting actions over the enhanced observation. Our approach retrieves
potentially relevant historical observations with an object-centric approach (Figure 1a), so that the
retrieved ones are more likely to be connected to the current observation as they describe at least one
shared interactive object. Our attention mechanisms are then applied across the retrieved multiple
observation texts to focus on informative contexts for action value prediction.

We evaluated our approach on the suite of Jericho IF games, compared to all previous approaches.
Our approaches achieved or outperformed the state-of-the-art performance on 20 out of 28 games.

2 Related Work

IF Game Agents. Previous work mainly studies the text understanding and generation in parser-
based or rule-based text game tasks, such as TextWorld platform [6] or custom domains [12, 9, 1].
The recent platform Jericho [7] supports over thirty human-written IF games. Earlier successes in
real IF games mainly rely on heuristics without learning. NAIL [8] is the state-of-the-art among these
“no-learning” agents, employing a series of reliable heuristics for exploring the game, interacting with
objects, and building an internal representation of the game world. With the development of learning
environments like Jericho, the RL-based agents have started to achieve dominating performance.

A critical challenge for learning-based agents is how to handle the combinatorial action space in
IF games. LSTM-DQN [12] was proposed to generate verb-object action with pre-defined sets of
possible verbs and objects, but treat the selection and learning of verbs and objects independently.
Template-DQN [7] extended LSTM-DQN for template-based action generation, introducing one
additional but still independent prediction output for the second object in the template. Deep
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Reinforcement Relevance Network (DRRN) [9] projects each action into a hidden space that matches
the current state representation vector for action selection. Action-Elimination Deep Q-Network
(AE-DQN) [15] learns to eliminate invalid action for efficient policy learning via utilizing expert
demonstration data.

Other techniques focus on addressing the partial observability in text games. Knowledge Graph
DQN (KG-DQN) [3] constructs and represents the game states as knowledge graphs with objects
as nodes and uses pre-trained general purposed OpenIE tool and human-written rules. KG-DQN
handles the action representation following DRRN. KG-A2C [2] later extends the work for IF games,
by adding additional information extraction heuristics to fit the complexity of the object relations in
IF games and utilizing a GRU-based action generator to handle the action space.

3 Multi-Paragraph Reading Comprehension for IF Games

Problem Formulation. Each IF game can be defined as a Partially Observable Markov Decision
Process (POMDP), namely a 7-tuple of 〈 S, A, T , O, Ω, R, γ 〉. , representing the hidden game
state set, the action set, the state transition function, the set of textual observations composed from
vocabulary words, the textual observation function, the reward function, and the discount factor
respectively. The game playing agent interacts with the game engine in multiple turns until the
game is over or the maximum number of steps is reached. At the t-th turn, the agent receives a
textual observation describing the current game state ot ∈ O and sends a textual action command
at ∈ A back. The agent receives additional reward scalar rt which encodes the game designers’
objective of game progress. Thus the task of the game playing can be formulated to generate a textual
action command per step as to maximize the expected cumulative discounted rewards E

[∑∞
t=0 γ

trt

]
.

Value-based RL approaches learn to approximate a state-action value function Q(ot, at;θ) which
measures the expected cumulative rewards of taking action at when observing ot. The agent selects
action based on the action value prediction of Q(o, a;θ).

Template Action Space. Template action space considers actions satisfying decomposition in the
form of 〈verb, arg0, arg1〉. For example, the action command [east], [pick up eggs] and [break window
with stone] can be represented as template actions 〈east, none, none〉, 〈pick up OBJ, eggs, none and
〈break OBJ with OBJ,window, stone〉. We re-use the template library and object list from Jericho,
which are extracted from human game play records. The verb phrases verb usually consist of several
vocabulary words and each object arg0/1 is usually a single word.
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Figure 2: Our RC-based action prediction model architecture.
The model details are in Appendix A.

RC-based Template Action Pre-
diction. We parameterize the
observation action value function
Q(o, a=〈verb, arg0, arg1〉;θ) by utiliz-
ing the decomposition of the template
actions and context-query contextual-
ized representation in RC. Our model
treats the observation o as a context
in RC and the verb=(v1, v2, ..., vk)
component of the template actions as a
query. Then a verb-aware observation
representation is derived via a RC reader
model with Bidirectional Attention Flow
(BiDAF) [14] and self-attention. The
observation representation responding
to the arg0 and arg1 words are pooled
and projected to a scalar value estimate
for Q(o, a=〈verb, arg0, arg1〉;θ). A
high-level model architecture of our
model is illustrated in Figure 2.

Multi-Paragraph Confidence Method for Partial Observations We propose to retrieve past
observations with an object-centric approach. Multiple past observations may share objects with
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Game Walkthrough-100 TDQN DRRN KG-A2C MPRC-DQN RC-DQN

acorncourt 30 1.6 10 0.3 10.0 10.0
advent 113 36 36 36 63.9 36
adventureland 42 0 20.6 0 24.2 21.7
afflicted 75 1.3 2.6 – 8.0 8.0
balances 30 4.8 10 10 10 10
detective 350 169 197.8 207.9 317.7 291.3
dragon 25 -5.3 -3.5 0 0.04 4.84
enchanter 125 8.6 20 12.1 20.0 20.0
gold 30 4.1 0 – 0 0
inhumane 70 0.7 0 3 0 0
jewel 24 0 1.6 1.8 4.46 2.0
karn 40 0.7 2.1 0 10.0 10.0
library 30 6.3 17 14.3 17.7 18.1
ludicorp 37 6 13.8 17.8 19.7 17.0
omniquest 50 16.8 10 3 10.0 10.0
pentari 60 17.4 27.2 50.7 44.4 43.8
reverb 50 0.3 8.2 – 2.0 2.0
snacktime 50 9.7 0 0 0 0
sorcerer 150 5 20.8 5.8 38.6 38.3
spellbrkr 160 18.7 37.8 21.3 25 25
spirit 8 0.6 0.8 1.3 3.8 5.2
temple 20 7.9 7.4 7.6 8.0 8.0
tryst205 50 0 9.6 – 10.0 10.0
yomomma 34 0 0.4 – 1.0 1.0
zenon 20 0 0 3.9 0 0
zork1 102 9.9 32.6 34 38.3 38.8
zork3 3a 0 0.5 0.1 3.63 2.83
ztuu 100 4.9 21.6 9.2 85.4b 79.1

Winning 11%/3 18%/5 14%/4 57%/16 43%/12
percentage / counts 71%/20

Table 1: Performance on Jericho benchmark games. The best performing agent score per game is in bold. The
Winning percentage / counts row computes the percentage of games the corresponding agent is best. The scores
of baselines are from their papers. The games 905, anchor, awaken, deephome and moonlit are omitted because
all the methods achieved the same initial scores.
a Zork3 walkthrough does not maximize the score in the first 100 steps but explores more. b Our agent discovers
some unbounded reward loops in the game Ztuu.

the current observation, and it is computationally expensive and unnecessary to retrieve all of such
observations. The utility of past observations associated with each object is often time-sensitive
in that new observations may entirely or partially invalidate old observations. We thus propose a
time-sensitive strategy for retrieving past observations. Specifically, given the detected objects from
the current observation, we retrieve the most recent K observations with at least one shared object.
The K retrieved observations are sorted by time steps and concatenated to the current observation.
The observations from different time steps are separated by a special token. Our RC-based action
prediction model treated the concatenated observations as the observation inputs, and no other parts
are changed. We use the notation ot to represent the current observation and the extended current
observation interchangeably.

Training Loss We apply the Deep Q-Network (DQN) [11] to update the parameters θ of our
RC-based action prediction model. The loss function is:

L(θ) = E(ot,at,rt,ot+1)∼D

[
||Q(ot, at; θ)− (rt + γmax

b
Q(ot+1, b; θ

−))||
]

where D is the experience replay consisting of recent gameplay transition records. Previous work
samples transition tuples with immediate positive rewards more frequently to speed up learning [12, 7].
We extend the strategy from transition level to trajectory level. We prioritize transitions from
trajectories that outperform the exponential moving average score of recent trajectories.
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4 Experiments

We evaluate our proposed methods on the suite of Jericho supported games. We compared to all
previous baselines that include recent methods for large action space and partial observation.

Jericho Handicaps and Configuration. The handicaps used by our methods are the same as other
baselines. First, we use the Jericho API to check if an action is valid with game-specific templates. All
valid templates are considered in action value prediction. Second, we augmented the observation with
the textual feedback returned by the command [inventory] and [look]. Previous work also included
the last action or game score as additional inputs. Our model discarded these two types of inputs as
we did not observe a significant difference by our model. The maximum game step number is set to
100 following baselines.

Implementation Details. We apply spaCy3 to tokenize the observations and detect the objects in
the observations. We use the 100-dimensional GloVe embeddings as fixed word embeddings. The
out-of-vocabulary words are mapped to a randomly initialized embedding. The dimension of Bi-GRU
hidden states is 128. The history retrieval window K is 2. For DQN configuration, we use the
ε-greedy strategy for exploration, annealing ε from 1.0 to 0.05. γ is 0.98. We use Adam to update
the weights with 10−4 learning rate. Other parameters are set to their default values.

Baselines. We compare with all the public results on the Jericho suite, namely TDQN [7],
DRRN [9], and KG-A2C [2]. As discussed, our approaches differ from them mainly in the strategies
of handling the large action space and partial observability of IF games.

Overall Performance We summarize the performance of our Multi-Paragraph Reading Compre-
hension DQN (MPRC-DQN) agent and baselines in Table 1. Of the 28 IF games, our MPRC-DQN
achieved or improved the state of the art performance on 16 games. The best performing baseline
(DRRN) achieved the state-of-the-art performance on only five games.

We include the performance of an RC-DQN agent, which implements our RC-based action prediction
model but only takes the current observations as inputs. It also outperformed the baselines by a
large margin. After we consider the RC-DQN agent, our MPRC-DQN still has the highest winning
percentage, indicating that our RC-based action prediction model has a significant impact on the
performance improvement of our MPRC-DQN and the improvement from the multi-passage retrieval
is also unneglectable. Moreover, compared to RC-DQN, our MPRC-DQN has another essential
advantage of fast convergence despite whether it improves the final scores of games. Finally, our
approaches, overall, achieve the new state-of-the-art on 20 games, giving a significant improvement
in the field of IF game playing.

5 Conclusion

We formulate the general IF game playing as MPRC tasks, enabling an MPRC-style solution to
efficiently address the key IF game challenges on the huge combinatorial action space and the partial
observability in a unified framework. Our approaches achieved significant improvement over the
previous state-of-the-art on both game scores and training data efficiency. Our formulation also
bridges broader NLU/RC techniques to address other critical challenges in IF games for future work,
e.g., common-sense reasoning, novelty-driven exploration, and multi-hop inference.
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A RC Model for Template Action Details

Observation and verb Representation. We tokenize the observation and the verb phrase into
words, then embed these words using pre-trained GloVe embeddings [13]. An shared encoder block
that consists of LayerNorm [4] and Bidirectional GRU [5] processes the observation and verb word
embeddings to obtain the separate observation and verb representation.

Observation-verb Interaction Layers. Given the separate observation and verb representation, we
apply two attention mechanisms to compute a verb-contextualized observation representation. We first
apply BiDAF with observation as the context input and verb as the query input. Specifically, we denote
the processed embeddings for observation word i and template word j as oi and tj . The attention
between the two words is then aij=w1 ·oi+w2 ·tj +w3 ·(oi⊗tj), wherew1,w2,w3 are learnable
vectors and ⊗ is element-wise product. We then compute the “verb2observation” attention vector for
the i-th observation word as ci=

∑
j pijtj with pij= exp(aij)/

∑
j exp(aij). Similarly, we compute

the “observation2verb” attention vector as q=
∑

i pioi with pi = exp(maxj aij)/
∑

i exp(maxj aij).
We concatenate and project the output vectors as w4 ·

[
oi, ci,oi ⊗ ci, q ⊗ ci

]
, followed by a linear

layer with leaky ReLU activation units [10]. The output vectors are processed by an encoder block.
We then apply a residual self-attention on the outputs of the encoder block. The self-attention is the
same as BiDAF, but only between the observation and itself.

Observation-Action Value Prediction. We generate an action by replacing the placeholders (arg0
and arg1) in a template with objects appearing in the observation. The observation-action value
Q(o, a=〈verb, arg0=objm, arg1=objn〉; θ) is achieved by processing each object’s corresponding
verb-aware observation representation. Specifically, we get the indices of an obj in the observation
texts I(obj, o). When the object is a noun phrase, we take the index of its headword. Some templates
may take zero or one object. We denote the unrequired objects as none so that all templates take
two objects. The index of the none object is for a special token. We set to the index of split token of
the observation contents. Because the same object has different meanings when it replaces different
placeholders, we apply two GRU-based embedding functions for the two placeholders, to get the
object’s verb-placeholder dependent embeddings. We derive a single vector representation harg0=objm
for the case that the placeholder arg0 is replaced by objm by mean-pooling over the verb-placeholder
dependent embeddings indexed by I(objm, o) for the corresponding placeholder arg0. We apply a
linear transformation on the concatenated embeddings of the two placeholders to obtain the observa-
tion action value Q(o, a)=w5 ·

[
harg0=objm ,harg1=objn

]
for a=〈verb, arg0=objm, arg1=objn〉. Our

formulation avoids the repeated computation overhead among different actions with a shared template
verb phrase.
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