
Process-Level Representation of Scientific Protocols
with a Text-Based Game Annotation Interface

Ronen Tamari˚
The Hebrew University of Jerusalem

ronent@cs.huji.ac.il

Fan Bai
Georgia Institute of Technology
fan.bai@cc.gatech.edu

Alan Ritter
Georgia Institute of Technology

alan.ritter@cc.gatech.edu

Gabriel Stanovsky˚

The Hebrew University of Jerusalem
gabis@cs.huji.ac.il

Abstract

We develop Process Execution Graphs (PEG), an executable document-level
representation of real-world wet lab biochemistry protocols, addressing challenges
such as cross-sentence relations, long-range coreference, grounding, and implicit
arguments. We built a corpus of complex lab protocols with a novel interactive
simulator built upon a text-based game engine that keeps track of entity traits and
semantic constraints during annotation, yielding high quality annotated PEGs. Our
framework presents several directions for future work, including the modelling
of challenging long range dependencies, application of text-based games for real-
world procedural text understanding, and extending simulation-based annotation to
new domains. 2

1 Introduction

There is a drive in recent years towards automatic wet lab environments, where menial benchwork
procedures such as pipetting, centrifuging, or incubation are carried out automatically by software-
controlled lab equipment. These environments allow reliable and precise experiment reproducbility
while relieving researchers from tedious and laborious work which is prone to human error [Bates
et al., 2017, Keller et al., 2019]. To achieve this, several programmatic formalisms are developed to
describe an experiment as an executable program. For example, Autoprotocol [Lee and Miles, 2018]
defines a mix predicate taking three arguments: mode, speed, and duration.

A promising direction to leverage automatic wet-lab environments is a conversion from natural
language protocols, written in expressive free-form language, to low-level, machine executable
instructions, ensuring a non-ambiguous, repeatable description of experiments [Mehr et al., 2020].

However, a large semantic gap exists between machine-executable formalisms and standard
annotation methods for scientific procedural text (§4). Current datasets, such as Wet Labs Protocols
(WLP) [Kulkarni et al., 2018] and Materials Science Procedural Text Corpus (MSPTC) [Mysore
et al., 2019], annotate action-graph semantics; sentence-level, shallow semantic structures consisting
of labeled text-spans and relations between them (Fig. 1, top right). While these annotations
are useful for text-mining, they do not provide sufficient process-level details for execution; for

˚Work begun at the Allen Institute for Artificial Intelligence.
2We will make our annotated corpus, simulator, annotation interface and interaction data available for use by

the research community.

Wordplay: When Language Meets Games Workshop @ NeurIPS 2020,
https://wordplay-workshop.github.io/

https://wordplay-workshop.github.io/

Figure 1: We use text-based games as an interactive annotation interface (left) to capture Process
Execution Graphs (right, middle): grounded, process level representations bridging sentence-level
action-graph representations (right,top) and lab-specific executable instructions (right, bottom). Our
interactive framework and data enable development of text-based game agents as text-to-code virtual
assistants.

example, resolution of implicit arguments and structured representation of entity locations throughout
a procedure [Mehr et al., 2020].

In this work, we focus on a crucial step bridging natural language protocols and executable instructions
– the extraction and representation of the relations conveyed by the protocol in a formal graph structure,
termed Process Execution Graphs (PEG), exemplified in Figure 1. PEGs capture both concrete, exact
quantities (“30 minutes”), as well as vague instructions (“swirl gently”). A researcher can then port
the PEG (either manually or automatically) to their specific lab equipment, e.g., specifying what
constitutes a gentle swirl setting and adding missing arguments, such as the duration of the incubation
in Figure 1.

Formally, PEGs are directed, acyclic labeled graphs (§2), capturing how objects in the lab (e.g.,
cells, tubes) are manipulated by lab operations (e.g., mixing, incubating), and in what order.
Importantly, PEGs capture relations which may span across multiple sentences and implicit arguments.
For example, the PEG in Figure 1 explicitly captures the relation between culture tubes, mentioned in
the first sentence, and swirl and incubate which appear in later sentences.

To annotate long and complex lab protocols, we develop a text-based game annotation interface (Fig. 1)
simulating objects and actions in a lab environment (§3). Our annotators are given natural language
wet labs procedures from WLP, and are asked to repeat their steps by issuing textual commands
to the simulator. The commands are deterministically converted to our PEG representation. This
interface takes much of the burden off annotators by keeping track of object traits and commonsense
constraints. For example, when the annotator issues a single transfer command for a container,
the simulator moves all its contents as well. We find that in-house annotators were able to effectively
use this interface on complex protocols, achieving good agreement and capturing rich detail compared
with span-based annotation methods (e.g., BRAT [Stenetorp et al., 2012]).

In conclusion, we make the following contributions: (1) We formalize a PEG representation for
free-form, natural language lab protocols, providing a semantic scaffold between free-form scientific
literature and low-level, machine executable instructions. (2) We develop a novel annotation interface
for procedural text annotation using text-based games, and show that it is intuitive enough for wet-lab
protocol annotation. (3) We release a challenging corpus of 279 PEGs representing document-level
lab protocols from WLP. This size is on par with similar corpora of procedural text [Mysore et al.,
2019, Vaucher et al., 2020], while providing additional process-level information hitherto unavailable.

2

2 Task Definition: Process Execution Graphs

Intuitively, we extend the WLP annotations [Kulkarni et al., 2018] from the sentence level to entire
documents, aiming to capture all of the relations in the protocol. Formally, our representation is a
directed, labeled, acyclic graph structure, dubbed a Process Execution Graph (PEG), exemplified in
Figures 1 and 2, and formally defined below. See Appendix A for the complete ontology.

2.1 PEG Structure

Nodes. PEG nodes are triggered by explicit text spans in the protocol, appearing in the center of each
node (e.g., “swirl", or “ice”). Nodes consist of two types: (1) predicates, marked in orange: denoting
lab operations, such as add; and (2) arguments, marked in blue: representing physical lab objects
(e.g., culture tubes, cells), exact quantities (30 minutes), or abstract instructions (e.g., gently).

Edges. Following PropBank notation [Kingsbury and Palmer, 2003], PEGs consist of three types
of edges derived from the Autoprotocol ontology, and denoted by their labels: (1) core-roles (e.g.,
“ARG0”, “ARG1”): indicating predicate-specific roles, aligning with Autoprotocol’s ontology. For
example, ARG0 of mix assigns the element to be mixed; (2) non-core roles (e.g., “setting”, “site”,
or “co-ref”): indicate predicate-agnostic relations. For example, the site argument always marks
the location in which a predicate is taking place; and (3) temporal edges, labeled with a special
“succ” label: define a temporal transitive ordering between predicates. In Figure 1, add occurs before
swirl, which occurs before incubate.

2.2 Comparison with action graphs

Aside from their inherent support for execution, PEGs differ from action graph annotations in three
main aspects.

Operation types. To support action-specifc semantics, PEGs record fine-grained operation types
based on Autoprotocol (e.g., transfer, mix), beyond the generic action span label used in
WLP and MSPTC.

Argument re-use. While the PEG does not form directed cycles (since temporal relations define a
partial ordering), it does form non-directed cycles (or re-entrancies). These occur where there exist
nodes u, v such that there are two different paths from u to v. This occurs when an object is re-used,
i.e., participates in two or more temporally-dependent operations. For example, see culture tubes,
which participates in all operations in Figure 1. Action-graph approaches typically do not annotate
argument re-entrancies owing to complications in the case of operations that cause a materials’ state
to change. As noted in Mysore et al. [2019], "when a materials state changes due to a specific
operation, considering the same text span to be the argument of a different operation would not be
chemically valid." Our simulator-based approach allows us to address this difficulty by abstracting
away from text spans: spans function as references to objects for which state-change can be tracked.
Furthermore, as can be seen for the case of the tubes in Fig. 1, re-entrancies feature centrally in
typical machine-executable protocol representations, in the form of calls by reference. Therefore,
re-entrancies should be accounted for to capture the full process workflow necessary in an executable
setting.

Cross-sentence relations. Edges pu, vq may be triggered either by within-sentence relations, when
both u and v are triggered by spans in the same sentence, or by cross-sentence relations, when u
and v are triggered by spans in different sentences. Previous efforts have focused on sentence-level
annotation for simplicity [Vaucher et al., 2020], and excluded synthesis procedures featuring primarily
cross-sentence relations [Mysore et al., 2019]. While cross sentence relations typically complicate
span-based methods, we hypothesize that our simulator makes annotation of such relations more
intuitive; unlike span-based representation, simulators can more naturally represent concrete referents
which persist across sentences unless mentioned otherwise.

In the following section, we will show that both reentrancies and cross-sentence relations are abundant
and annotated with good agreement in our dataset.

3

Figure 2: A gold PEG annotation for a real-world wet lab protocol whose text is presented in the
lower right corner, exemplifying several common properties: (1) complex language, in relatively
short sentences; (2) a chain of temporally-dependent, cross-sentence operations; (3) a common object
that is being acted upon through side effects throughout the process (vial); and (4) vial is mostly
omitted in the text after being introduced in the first sentence, despite participating in all following
sentences. In the last sentence it appears with a metonymic expression (ligation mixture).

3 Data Collection: The X-WLP Corpus

In this section, we describe in detail the creation of our annotated corpus: X-WLP. The protocols in
X-WLP are a subset (44.8%) of those annotated in the WLP corpus. These were chosen because they
are covered well by Autoprotocol’s ontology.

In total, we collected 4,262 sentences (54.1K tokens) in 279 wet lab protocols annotated with our
graph representation. X-WLP annotates long examples, often spanning dozens of sentences, and its
size is comparable (e.g., in terms of annotated words) to the MSPTC corpus [Mysore et al., 2019]
and other related procedural datasets. See Appendix B.1 for a detailed comparison.

Despite WLP’s focus on sentence-level relations (see top of Figure 1), it is a valuable starting point
for a document-level representation. We pre-populate our PEG representations with WLP’s gold
object mentions (e.g., cells, 30 minutes), operation mentions (swirl and incubate), and within-
sentence relations (e.g., between gently and swirl). We then ask annotators to enrich them with
type grounding for operations and arguments, as well as cross-sentence relations, as defined in §2.
From these annotations we obtain process-level representations such as those presented in Figures 1
and 2.

3.1 Process-Level Annotation Interface: Text-Based Simulator

Annotating cross-sentence relations and grounding without a dedicated user interface is an arduous
and error-prone prospect. Consider as an example the ligation mixture mention in Figure 2. This
mention is a metonym for vial (5 sentences earlier), after mixing in the ligase. This kind of metonymic
co-reference is known to be difficult for annotation [Jurafsky and Martin, 2009], and is cumbersome
to represent using span-based methods like BRAT [Stenetorp et al., 2012]. A simulator can provide a
natural way to account for it by representing the relevant temporal and contextual information: after
sentence 4, vial contains the ligation buffer mixed with other entities.

To overcome these challenges and achieve high-quality annotations for this complex task, we develop
a simulator annotation interface, building upon the TextWorld framework [Côté et al., 2018]. This
approach uses text-based games as the underlying simulator environment, which we adapt to the
biochemistry domain.

The annotator interacts with the text-based interface to simulate the raw wet lab protocol (Figure 1):
setting the types of operations (the first interaction sets the span “incubate" as a temperature
operation) and assigning their inputs (the last line assigns culture tubes as an input to
incubate), while the simulator tracks entity states and ensures the correct number and type
of arguments, based on the Autoprotocol ontology. For example, the second interaction in Figure 1
indicates a missing argument for the incubate operation (the argument to be incubated). Finally,

4

tracking temporal dependency (“succ” edges) is also managed entirely by the simulator by tracking
the order in which the annotator issues the different operations.

Further assistance is provided to annotators in the form of of an auto-complete tool (last interaction
in Figure 1), visualization of current PEG and a simple heuristic “linter” [Johnson, 1977] which flags
errors such as ignored entities, by producing a score based on the number of connected components
in the output PEG.

3.2 Data Analysis

Inter-annotator agreement. We turn to the literature on abstract meaning
representation (AMR; Banarescu et al., 2013) for established graph agreement metrics using the
Smatch score [Cai and Knight, 2013], which we adapt to our setting. We report a mean Smatch
of 0.84, comparable to those obtained for AMR, where reported gold agreement varies between
0.69´ 0.89 [Cai and Knight, 2013]. See Appendix B.2 for detailed analysis.

Information gain from process-level annotation. Analysis of the relations in X-WLP reveals that
a significant proportion of arguments in PEGs are re-entrancies (32.4%) or cross-sentence (50.3%)3.
Figure 2 shows a representative example, with the vial participating in multiple re-entrancies and
long-range relations, triggered by each sentence in the protocol.

To shed light on the additional process-level information captured by X-WLP relative to WLP, we
compare (X-WLP, WLP) the average number of arguments per operation node (3.01, 1.87) as well
as the ratio of operation nodes with no core arguments (0.0, 0.19). For example, see the swirl
instruction at the top of Figure 1: in WLP, this predicate has no core role argument and is thus
semantically under-defined. X-WLP correctly captures the core role of culture tubes. By definition,
our use of input validation by the simulator prevents semantic under-specification, which is likely a
significant factor in the higher counts for cross-sentence relations and overall average arguments in
X-WLP.

4 Related & Future Work

As discussed above, our work builds upon sentence-level shallow semantic parsing approaches to
annotating procedural text, including WLP [Kulkarni et al., 2018], biology textbooks [Berant et al.,
2014], materials science [Mysore et al., 2019]. These approaches have focused mainly on text mining
applications, whereas outputting a machine executable synthesis procedure requires a more structured,
process-level semantic representation.

Recent works are beginning to address this requirement: Vaucher et al. [2020] converts chemical
synthesis procedures to more structured action representations for downstream incorporation into
automated workflows. However, annotation is still only at sentence level. Concurrently with this work,
Mehr et al. [2020] have similarly proposed a process-level executable representation for chemical
procedures. They also focus primarily on sentence level analysis and rely on a human-in-the-loop
to verify the process-level conversion. Future work could leverage our approach towards enhancing
process-level parsers.

Structurally, PEGs are similar to abstract meaning representation (AMR; Banarescu et al. 2013),
allowing us to use agreement and performance metrics developed for AMR. In contrast with the
sentence-level AMR, a major challenge in this work is annotating procedure-level representations.

Existing process-level datasets have been limited to shorter and simpler texts; ProPara [Dalvi
et al., 2018] contains short (non-expert) annotations of scientific processes. Kiddon et al. [2015]
and Bosselut et al. [2018] provide a small number of gold process-level annotations for cooking
recipes.

Our framework also provides a link to text-based game approaches to procedural text understanding.
Tamari et al. [2019] modelled scientific procedures with text-based games but used only synthetic
data. Our simulator enables leveraging recent advances on text-based games agents (e.g., [Adhikari
et al., 2020]); applying such agents towards complex natural language understanding is a promising
future direction.

3See Appendix B.3 for detailed analysis.

5

Broader Impact

Our work focuses on enhancing the capability for machine reading of scientific experimental protocols.
This research may benefit a wide range of scientific communities where much research remains
“trapped” in unstructured textual format, which due to its ambiguous nature, presents many challenges
for reproduceability and knowledge transfer. More precise machine reading technology may also be
used maliciously, for example to harvest structured information for surveillance purposes.

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-Antoine Rondeau,

Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and William L. Hamilton. Learning
Dynamic Knowledge Graphs to Generalize on Text-Based Games. 2020. URL http://arxiv.
org/abs/2002.09127.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representation
for sembanking. In LAW@ACL, 2013.

Maxwell Bates, Aaron J Berliner, Joe Lachoff, Paul R Jaschke, and Eli S Groban. Wet lab accelerator:
a web-based application democratizing laboratory automation for synthetic biology. ACS synthetic
biology, 6(1):167–171, 2017.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D. Manning. Modeling biological processes for reading
comprehension. In EMNLP, 2014.

Antoine Bosselut, Corin Ennis, Omer Levy, Ari Holtzman, Dieter Fox, and Yejin Choi. Simulating
action dynamics with neural process networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJYFzMZC-.

Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature structures. In
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 748–752, Sofia, Bulgaria, August 2013. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P13-2131.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pages 41–75. Springer,
2018.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih, and Peter Clark. Tracking state changes
in procedural text: a challenge dataset and models for process paragraph comprehension. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1595–1604, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1144. URL https://www.aclweb.org/anthology/N18-1144.

Marco Damonte, Shay B. Cohen, and Giorgio Satta. An incremental parser for Abstract Meaning
Representation. In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Papers, pages 536–546, Valencia, Spain,
April 2017. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/E17-1051.

Stephen C Johnson. Lint, a C program checker. Citeseer, 1977.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Pearson Prentice Hall,
second edition, 2009.

Ben Keller, Justin Vrana, Abraham Miller, Garrett Newman, and Eric Klavins. Aquarium: The
Laboratory Operating System version 2.6.0, March 2019. URL https://doi.org/10.
5281/zenodo.2583232.

6

http://arxiv.org/abs/2002.09127
http://arxiv.org/abs/2002.09127
https://openreview.net/forum?id=rJYFzMZC-
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/N18-1144
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://doi.org/10.5281/zenodo.2583232
https://doi.org/10.5281/zenodo.2583232

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi. Mise en place:
Unsupervised interpretation of instructional recipes. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 982–992, Lisbon, Portugal, September
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1114. URL https:
//www.aclweb.org/anthology/D15-1114.

Paul Kingsbury and Martha Palmer. Propbank: the next level of treebank. 2003.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and Raghu Machiraju. An annotated corpus for machine
reading of instructions in wet lab protocols. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 97–106, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-2016. URL https://www.
aclweb.org/anthology/N18-2016.

Peter L Lee and Benjamin N Miles. Autoprotocol driven robotic cloud lab enables systematic machine
learning approaches to designing, optimizing, and discovering novel biological synthesis pathways.
In SIMB Annual Meeting 2018. SIMB, 2018.

S. Hessam M. Mehr, Matthew Craven, Artem I. Leonov, Graham Keenan, and Leroy Cronin. A
universal system for digitization and automatic execution of the chemical synthesis literature.
Science, 370(6512):101–108, 2020. ISSN 0036-8075. doi: 10.1126/science.abc2986. URL
https://science.sciencemag.org/content/370/6512/101.

Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin Huang, Haw-Shiuan Chang, Emma Strubell,
Jeffrey Flanigan, Andrew McCallum, and Elsa Olivetti. The materials science procedural
text corpus: Annotating materials synthesis procedures with shallow semantic structures. In
Proceedings of the 13th Linguistic Annotation Workshop, pages 56–64, 2019.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić, Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
Brat: A web-based tool for nlp-assisted text annotation. In Proceedings of the Demonstrations at
the 13th Conference of the European Chapter of the Association for Computational Linguistics,
EACL ’12, page 102–107, USA, 2012. Association for Computational Linguistics.

Ronen Tamari, Hiroyuki Shindo, Dafna Shahaf, and Yuji Matsumoto. Playing by the book: An
interactive game approach for action graph extraction from text. In Proceedings of the Workshop
on Extracting Structured Knowledge from Scientific Publications, pages 62–71, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-2609.
URL https://www.aclweb.org/anthology/W19-2609.

Alain C. Vaucher, Federico Zipoli, Joppe Geluykens, Vishnu H. Nair, Philippe Schwaller, and Teodoro
Laino. Automated extraction of chemical synthesis actions from experimental procedures. Nature
Communications, 11(1):1–11, 2020. ISSN 20411723. doi: 10.1038/s41467-020-17266-6. URL
http://dx.doi.org/10.1038/s41467-020-17266-6.

7

https://www.aclweb.org/anthology/D15-1114
https://www.aclweb.org/anthology/D15-1114
https://www.aclweb.org/anthology/N18-2016
https://www.aclweb.org/anthology/N18-2016
https://science.sciencemag.org/content/370/6512/101
https://www.aclweb.org/anthology/W19-2609
http://dx.doi.org/10.1038/s41467-020-17266-6

A Annotation Schema

In the following subsections, we provide details of the annotation schema used: the PEG node and
edge type ontology, along with examples and the rules governing the annotation process.

A.1 Nodes

A.1.1 Predicates (Operations)

Operation nodes correspond to “action” entities in WLP. In X-WLP, to facilitate conversion to
executable instructions, we further add a fine-grain operation type; for each operation, annotators
were required to select the closest operation type, or a general type if none applied. Operation
types are broadly aligned with Autoprotocol operation types, but are broader in scope, to not limit
applicability to any one platform. For example, we use a more general measure operation type
rather than the specific types of measurement operations in Autoprotocol (spectrophotometry,
measure-volume, etc.). Table 1 lists operation types, their frequency in the data, and example
mentions.

A.1.2 Arguments (Entities)

Predicate arguments, including both physical entities such as reagents, containers and devices, as
well as more abstract entities like measurements (1 ml) and operation settings (30 minutes). Table 2
lists entity types, their frequency in the data, and example mentions.

A.2 Edges

In general, edges are represented by triplets of the form ps, r, tq where s and t are argument nodes
(§A.1.2) and r is a core or non-core role. Dependent on a particular role r, certain restrictions may
apply to the fine-grained type of s and t, as described below.

A.2.1 Core Roles

Core roles, displayed in Table 3, represent operation specific roles, for example “ARG1” for the
seal operation is a seal entity representing the seal of the “ARG0” argument. For core roles, the
following restrictions hold:

• Source nodes s are restricted to any of the object types s P treagent, device, seal, locationu
representing physical objects. The only exception to this rule is that “ARG1” for the seal
operation must be a seal entity.

• Target node t is a predicate of one of the types in §A.1.1.

Table 1: Details of PEG predicate types, along with example frequent trigger spans and relative
frequency in X-WLP.

Operation Type Frequent example spans Count Pct.

Transfer add, transfer, place 1301 33.2
Temperature
Treatment incubate, store, thaw 503 12.8

General Initiate, run, do not vortex 469 11.9
Mix mix, vortex, inverting 346 8.8
Spin spin, centrifuge, pellet 282 7.2
Create prepare, make, set up 178 4.5
Destroy discar, decant, pour off 170 4.3
Remove remove, elute, extract 168 4.3
Measure count, weigh, measure 149 3.8
Wash wash, rinse, clean 146 3.7
Time wait, sit, leave 114 2.9
Seal cover, seal, cap 68 1.7
Convert change, transform, changes 21 0.5

8

Table 2: Details of PEG argument types, along with example frequent trigger spans and relative
frequency in X-WLP.

Entity Type Frequent example spans Count Pct.

Reagent supernatant, dna, sample 3362 32.6
Measurement 1.5 mL, 595nm, 1pmol 1924 18.6
Setting overnight, room temperature 1622 15.7
Location tube, ice, plates 1373 13.3
Modifier genty, carefully, immediately 1070 10.3
Device forceps, pipette tip, water bath 590 5.7
Method dilutions, up and down, pipetting 271 2.6
Seal lid, cap, aluminim foil 97 0.9

Table 3: Details of core role semantics for all operation types. The “Required” column specifies
which roles must be filled for a given operation. ARG* is short for tARG0,ARG1,ARG2u.

Operation Role Semantics Required

Spin

ARG0 centrifuged to
produce solid phase
ARG1 and/or liquid
phase ARG2

ARG0

Convert ARG0 converted to ARG1 ARG0, ARG1
Seal ARG0 sealed with ARG1 ARG0
Create ARG* to be measured ARG0
General - ARG0
Destroy ARG0 discarded ARG0
Measure ARG* to be measured ARG0
Mix ARG* are mixed ARG0
Remove ARG0 removed from ARG1 ARG0
Temperature
Treatment ARG* to be heated/cooled ARG0

Time Wait after operation on ARG0 ARG0

Transfer ARG* are sources,
transferred to "site" ARG0, site

Wash ARG0 washed with ARG1 ARG0, ARG1

• r is a core argument relation, r P tARG0,ARG1,ARG2u or ARG* for short.

• Certain roles may be required for a valid predicate t, for example the transfer operation
requires at minimum both source and target arguments to be specified by the ARG0 and site
roles, respectively.

A.2.2 Non-core Roles

Non-core roles (e.g., “setting”, “site”, or “co-ref”) indicate predicate-agnostic labels. For example,
the site argument always marks the location in which a predicate is taking place. Non-core roles are

Table 4: Details of non-core roles and restrictions on source and target node types. Object is short
for the set of entity types representing physical objects: treagent, device, seal, locationu.

Role Source Types Target Types

co-ref Object Object
measure Measurement Object
setting Setting Object

modifier Modifier Object, Operation,
Measurement

usage Method, Object Operation
located-at Object Object
part-of Object Object

9

displayed in Table 4, and role-specific restrictions on s and t are listed under “Source Types” and
“Target Types”, respectively.

B Dataset Details

B.1 Comparison with other datasets

Table 5 compares X-WLP with similar procedural text corpora in terms of average document, sentence
and word counts. As can be seen, X-WLP is on par with other recent datasets, and annotates complex
documents, constituting more than 15 sentences on average.

B.2 Inter-annotator agreement

Similarly to our PEG representation, the AMR formalism has predicate and argument nodes (lab
operations and entities in our notation) and directed labeled edges which can form undirected
cycles through reentrancies (nodes with multiple incoming edges). In Table 6 we report a graph
Smatch score [Cai and Knight, 2013] widely used to quantify AMR’s graph structure agreement,
as well as finer grained graph agreement metrics, adapted from Damonte et al. [2017]. Smatch
values are comparable to those obtained for AMR, where reported gold agreement varies between
0.69´0.89 [Cai and Knight, 2013], while our task deals with longer, paragraph length representations.
Reentrancies are the hardest for annotators to agree on, probably since they involve longer-range,
typically cross-sentence relations. On the other hand, local decisions such as argument and predicate
identification achieve higher agreement, and also benefit greatly from the annotations of WLP.

B.3 Reentrancies and cross-sentence relation statistics

Table 7 presents a breakdown of all relation types along with cross-sentence and re-entrancy
information. As noted in §3, analysis of the relations in Table 7 reveals that a significant proportion
of arguments in PEGs are re-entrancies (32.4%) or cross-sentence (50.3%). Note that for these
calculations we consider only argument relations that can in principle occur as re-entrancies: “ARG*”
and “site”, see relation ontology in Appendix A.2 for details. The cross-sentence calculation includes
co-reference closure information.

Table 5: Statistics of our annotated corpus (X-WLP), compared with the ProPara corpus [Dalvi et al.,
2018], material science (MSPTC; Mysore et al. [2019]) and chemical synthesis procedures (CSP;
Vaucher et al. [2020]). CSP is comprised of annotated sentences (document level information is not
provided)

X-WLP (ours) MSPTC CSP ProPara

words 54k 56k 45k 29k
words / sent. 12.7 26 25.8 9
sentences 4,262 2,113 1,764 3,300
sentences / docs. 15.28 9 N/A 6.8
docs. 279 230 N/A 488

Table 6: X-WLP inter-annotator agreement metrics. Smatch Cai and Knight [2013] quantifies overall
graph structure. Following metrics provide a finer-grained break down Damonte et al. [2017].

Agreement Metric F1

Smatch 84.99
Argument identification 89.72
Predicate identification 86.68
Core roles 80.52
Re-entrancies 73.12

10

Table 7: Breakdown of PEG relation types by frequency in X-WLP, showing counts of inter/intra-
sentence relations. Re-entrancies are possible only for core and “site” arguments, and may be either
inter or intra-sentence.

Relation # Intra. # Inter. Total # Re-entrancy

Core
‚ ARG0 2962 952 3914 1645
‚ ARG1 560 127 687 3
‚ ARG2 84 123 207 77
Total (core) 3606 1202 4808 1725

Non-Core
‚ site 1306 325 1631 360
‚ setting 3499 2 3501 -
‚ usage 1114 24 1138 -
‚ co-ref 129 1575 1704 -
‚ located-at 199 72 271 -
‚ measure 2936 18 2954 -
‚ modifier 1861 2 1863 -
‚ part-of 72 65 137 -
Total (non-core) 11116 2083 13199 360

Temporal 1218 788 2006 -

Grand Total 15940 (80%) 4073 (20%) 20013 2085

11

	Introduction
	Task Definition: Process Execution Graphs
	PEG Structure
	Comparison with action graphs

	Data Collection: The X-WLP Corpus
	Process-Level Annotation Interface: Text-Based Simulator
	Data Analysis

	Related & Future Work
	Annotation Schema
	Nodes
	Predicates (Operations)
	Arguments (Entities)

	Edges
	Core Roles
	Non-core Roles

	Dataset Details
	Comparison with other datasets
	Inter-annotator agreement
	Reentrancies and cross-sentence relation statistics

