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Abstract

This technical report presents our approach
to the Commonsense Persona-Grounded Di-
alogue Challenge (CPDC) 2025 API Track,
which aims to develop Al-driven dialogue sys-
tems for immersive video game NPCs. The
API Track constrains participants to use GPT-
4o-mini, requiring performance improvements
through prompt engineering rather than model
refinement. Building on the provided starter kit,
we identified challenges through comparison
with gold responses and conducted iterative im-
provements. Our main contributions include:
(1) for Task 1 (task-oriented dialogue), we ex-
tended conversation history from single-turn to
full history, added worldview information to
function calling prompts, and created few-shot
examples based on gold responses for handling
ambiguous instructions; (2) for Task 2 (context-
aware dialogue), we organized hierarchical
prompt structures including role and state infor-
mation, introduced explicit length constraints
for conciseness, and promoted proactive in-
formation provision to infer player intentions.
This report shares the details of these efforts,
experimental results, and insights gained dur-
ing development.

1 Introduction

Creating convincing and reliable non-player char-
acters (NPCs) is a critical challenge in modern
video game development. Traditional dialogue sys-
tems relying on pre-scripted responses limit the
depth and naturalness of player-NPC interactions.
The Commonsense Persona-Grounded Dialogue
Challenge (CPDC) 2025 addresses this limitation
by requiring Al systems to generate contextually
appropriate, persona-consistent responses while ex-
ecuting game-specific actions in dynamic environ-
ments.

The challenge consists of three tasks: (1) Task-
oriented dialogue, where NPCs must understand
player requests and execute appropriate game func-

tions; (2) Context-aware dialogue, where NPCs
maintain coherent conversations based on their per-
sona and game world; (3) Integrated dialogue and
task execution, which seamlessly combines natural
conversation with functional game actions. The
API Track specifically constrains participants to
use GPT-40-mini, emphasizing prompt engineer-
ing and system design over model training.

In this report, we describe our iterative prompt
refinement process based on the provided starter kit,
using comparison with gold responses to identify
areas. We implemented improvements for Task
1 extending conversation history, adding world-
view information, and introducing few-shot exam-
ples. We also showed improvements for Task 2 in-
cluding hierarchical prompt structures, conciseness
constraints, and proactive information provision.
We verified the effectiveness of each improvement
through experimentation. This report shares the
details of these efforts, analysis of experimental
results, and insights gained during development.

2 Task Description

The CPDC 2025, organized by Sony Group Cor-
poration, focuses on developing Al dialogue sys-
tems for video game NPCs that can conduct natural,
context-aware conversations while executing game-
specific actions. The challenge uses the PeaCoK
dataset (Gao et al., 2023), which provides persona
commonsense knowledge for consistent and engag-
ing narratives. Full details of the challenge are
available on the official page.'

2.1 Challenge Structure

The challenge consists of three tasks:

Task 1: Task-oriented dialogue. NPCs must
understand player requests and execute appropriate
game functions (e.g., retrieving information about
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items, locations, or game state).

Task 2: Context-aware dialogue. NPCs must
maintain coherent conversations that reflect their
persona, game worldview, and dialogue history
without executing functions.

Hybrid: Integrated dialogue and task exe-
cution. NPCs must seamlessly combine natural
conversation with proactive function calling while
balancing casual chat and task-driven interactions.

2.2 API Track Constraints

The API Track restricts participants to using GPT-
40-mini through the OpenAl API. Specific con-
straints are:

* Available model: gpt-4o-mini only (fine-tuned
models are not allowed)

* API call limit: Maximum 2 calls per utterance
* Input token limit: 2,000 tokens per turn

* Output token limit: 200 tokens per turn

* Timeout: 7 seconds per turn

» Network access blocked when using API

These constraints shift the focus from model
architecture and training to prompt engineering, ef-
ficient context management, and strategic function
calling.

3 Methodology

We adopted the two-stage architecture provided in
the starter kit and focused on prompt engineering
for each stage. We proceeded by running the starter
kit code, comparing outputs with gold responses to
identify issues.

3.1 System Architecture

The system provided in the starter kit operates in
two stages:

Stage 1: Function calling. The model receives
available tools and action functions along with con-
text information, then determines which functions
to call and their arguments.

Stage 2: Response generation. Using func-
tion call results, dialogue history, persona infor-
mation, worldview context, and role descriptions.
The model generates responses that incorporate
retrieved information while maintaining character
consistency.

This two-stage separation allows independent
prompt design for function selection and response
generation. Our efforts focused on refining prompts
for each stage based on this structure.

3.2 Approach

We attempted improvements through the following
iterative cycle:

1. Compare current system output on test data
with gold responses

2. Identify points/hypotheses likely to contribute
to performance

3. Consider and implement methods likely to be
effective

4. Observe how differences from gold responses
change while fine-tuning prompts

5. Submit and verify validity of improvement
points/hypotheses by observing automatic
score changes

3.3 Task 1 (Task-oriented Dialogue)
Improvements

3.3.1 Extending Conversation History

In the starter kit code, the process determining
function calling content only references the sys-
tem prompt and immediately preceding user input.
However, some function calls require context from
earlier conversation turns. We therefore included
the full conversation history in the function calling
prompt.

3.3.2 Adding Worldview Information

As a common LLM prompting technique, role
prompting (or persona prompting) that specifies
expert-like roles is known to improve performance
(Wang et al., 2023). In the starter kit implemen-
tation, information such as worldview and role is
used in the dialogue generation, but not in the func-
tion calling determination. Therefore, we added
the system prompt for the function calling process
to include this information.

3.3.3 Adding Few-shot Prompts

Determining which functions to call with which
arguments in function calling is precisely the main
challenge in Task 1. Therefore, we made few-
shot prompts for function calling using the gold
responses provided in the training data. Due to
context length constraints, we manually selected
examples with the following criteria:



* Covering a variety of function and argument
pairs to handle diverse situations

* Including dialogues where user instructions
are particularly ambiguous

The few-shot examples we made are shown in
Appendix A.

3.4 Task 2 (Context-aware Dialogue)
Improvements

3.4.1 Prompt Formatting Adding Information

The starter kit prompt did not include important
information such as role and state among the given
information. We modified the prompt to include
this information and organized the overall prompt
structure.

The final prompt consists of four main sections:
(1) role description, (2) character settings (persona
attributes), (3) worldview (game context and gen-
eral information), (4) knowledge (function results
and domain-specific information).

The final prompt is shown in Appendix B.

3.4.2 Making Responses Shorter

The agent tended to generate excessively long re-
sponses. For example, responses would include
lengthy numbered lists with detailed advice. Game
conversations require good pacing to avoid boring
users. Therefore, we added the instruction “Please
keep your response short (no more than three sen-
tences).” to make responses shorter. Initially, we
gave instructions without specifying a sentence
count, but this did not make responses short enough.
We chose three sentences because examination of
gold responses showed most fit within this length.

Note that even when explicitly specifying sen-
tence count, the LLM did not always adhere to this
constraint depending on the situation.

3.4.3 Promoting Proactive Information
Provision

We aimed to encourage the agent to infer players’
latent intentions and proactively provide relevant
information. Therefore, we added the instruction
“Infer the underlying needs or intentions from the
player’s statements and proactively provide rele-
vant information.”

4 Experiments and Results

4.1 Experimental Setup

We verified the effectiveness of each improvement
using the competition’s automatic evaluation mech-

anism. Table 1 shows scores for each task after
applying improvements in Round 2 automatic eval-
vation. Each method was applied cumulatively,
building upon all previous improvements.

Methods Hybrid Task1 Task2
Starter Kit 0.510 0416  0.603
+ Extended history ~ 0.555 0.512  0.597
+ Info addition 0.556 0.511 0.601
+ Few-shot 0.557 0.509  0.606
+ Conciseness 0.564 0.516 0.613
+ Proactive info 0.561 0.515 0.608

Table 1: Automatic evaluation scores in Round 2.

4.2 Effects of Improvements

From the score changes shown in the table, the fol-
lowing insights were obtained regarding the effects
of each improvement:

Extended conversation history (Section 3.3.1):
Task 1 score significantly improved from 0.416 to
0.512 (+0.096). This is considered to contribute
to improved function calling accuracy consider-
ing context. Meanwhile, Task 2 slightly decreased
from 0.603 to 0.597 (-0.006).

Prompt information addition (Section 3.3.2):
Task 2 score slightly improved from 0.597 to 0.601
(+0.004). Task 1 showed almost no change from
0.512 to 0.511 (-0.001).

Few-shot prompts (Section 3.3.3): Task 2 score
improved from 0.601 to 0.606 (+0.005), while Task
1 slightly decreased from 0.511 to 0.509 (-0.002).
It was unexpected that few-shot did not directly
contribute to Task 1 improvement.

Response conciseness (Section 3.4.2): Similar
improvements were observed in both tasks, with
Task 1 from 0.509 to 0.516 (+0.007) and Task 2
from 0.606 to 0.613 (+0.007).

Proactive information provision (Section
3.4.3): Slight decreases were observed with Task
1 from 0.516 to 0.515 (-0.001) and Task 2 from
0.613 to 0.608 (-0.005), with no clear improvement
effect confirmed.

4.3 Final Evaluation Results

In the final evaluation, we achieved 2nd place in
Task 2 of the API Track. Evaluation was conducted
from two perspectives in addition to automatic
score: response quality (Response Rank) and ap-
propriateness of knowledge utilization (Knowledge
Rank) through manual evaluation. Table 2 shows
results for the top 3 teams.



Rank Auto Sum Resp. Know.
Score Rank Rank Rank

1 (Team A) 0.626 3 2 1

2 (Ours) 0.621 7 5 2

3 (Team B) 0.623 8 1 7

Table 2: Final evaluation results for Task 2 API Track
top 3 teams.

Our team ranked 3rd in Automatic Score (0.621)
among the top 3 teams but achieved overall 2nd
place through Sum of Rank (sum of Response Rank
and Knowledge Rank). We achieved 2nd place in
Knowledge Rank, confirming the effectiveness of
prompt design utilizing context information such as
worldview and role (Sections 3.3.2, 3.4.1). Mean-
while, Response Rank remained at 5th place, sug-
gesting that efforts toward response conciseness
(Section 3.4.2) and proactive information provision
(Section 3.4.3) were insufficient.

5 Discussion

5.1 Key Insights

The main findings obtained through this effort are
described below:

Effectiveness of two-stage architecture and
iterative refinement: The two-stage architecture
(separation of function calling and response gen-
eration) enabled independent prompt refinement
for each stage. This separation made it easier to
identify which changes contributed to performance
improvements through iterative comparison with
gold responses.

Unexpected effects of improvements: Few-
shot prompts (Section 3.3.3) intended to improve
Task 1 showed greater effects on Task 2 (Task 1:
-0.002, Task 2: +0.005). Meanwhile, proactive in-
formation provision (Section 3.4.3) showed slight
performance decreases in both tasks. These results
indicate that effects of prompt improvements do
not necessarily align with intentions, supporting
the importance of hypothesis-testing iterative de-
velopment.

Importance of response conciseness: Re-
sponse conciseness (Section 3.4.2) brought similar
improvements to both tasks (each +0.007). The im-
portance of pacing in game dialogue was suggested
to be a common element in both task-oriented and
context-aware aspects.

Considerations on proactive information pro-
vision: Proactive information provision was an

attempt to encourage NPCs to infer player latent in-
tentions and act independently. However, it showed
negative effects in automatic evaluation. There may
be a trade-off between NPC autonomy and faithful
instruction execution required by the task.

Considerations from final evaluation results:
An interesting relationship between Response Rank
and Knowledge Rank was observed from the top 3
team results disclosed in the final evaluation (Sec-
tion 4.3). Team B (0.623) ranked 1st in Response
Rank but 7th in Knowledge Rank, our team (0.621)
ranked 5th in Response Rank but 2nd in Knowl-
edge Rank, and 1st place Team A (0.626) achieved
top ranks in both (Response: 2nd, Knowledge: 1st).
From this limited observation, a possible trade-
off between response quality and knowledge uti-
lization is suggested, though more team data is
needed. In our efforts, prompt information addition
(Sections 3.3.2, 3.4.1) showed only slight improve-
ment in Round 2 automatic evaluation, but the final
Knowledge Rank of 2nd suggests that appropriate
utilization of context information such as world-
view and role may have contributed to accurate
knowledge usage. Meanwhile, despite focusing
on efforts related to response quality such as im-
proving response conciseness (Section 3.4.2) and
proactive information provision (Section 3.4.3), Re-
sponse Rank remained at 5th place. This suggests
that response naturalness and appropriateness in-
volve more multifaceted elements than those ad-
dressed in this study.

5.2 Limitations

Our approach and evaluation have the following
limitations:

Token efficiency: By extending conversation
history (Section 3.3.1) to reference full dialogue
history during function calling, token usage in-
creases with each dialogue turn. Since the API
Track constraint limits input tokens to 2,000 per
turn, long conversations may exceed this limit. The
current implementation unconditionally includes
full history, but a mechanism to dynamically select
only highly relevant history would be needed.

Error propagation: In the two-stage architec-
ture, if Stage 1 (function calling) selects wrong
functions or specifies inappropriate arguments,
Stage 2 (response generation) cannot detect or cor-
rect these errors. For example, if function calling
specifies a non-existent item name and information
retrieval fails, the response generation stage can-
not recognize this failure and generates responses



based on incomplete information. The constraint
of maximum 2 API calls per utterance also makes
retries after error detection difficult.

Limitations of automatic evaluation: While
this study primarily verified improvement effects
based on automatic evaluation scores, there exist as-
pects of response quality that automatic evaluation
cannot capture. For instance, proactive information
provision (Section 3.4.3) showed negative effects
in automatic evaluation, but its usefulness in actual
game experience and impact on NPC naturalness
may require manual evaluation for appropriate as-
sessment. Additionally, the perspective of whether
retrieved information through function calling is
appropriately incorporated into responses is not suf-
ficiently measured by current evaluation metrics.

Hallucination issues: While examining outputs,
hallucinations, a common LLM problem, were con-
firmed. In one example, function calling should
have specified the correct item name “Avis Wind”
but used the non-existent item name “Power Bow,”
causing information retrieval to fail. However,
unlike typical open-domain hallucinations, in the
closed world of games, hallucination occurrence
can potentially be detected through function call-
ing errors (information retrieval failures). Appro-
priate error handling implementation and ground-
ing mechanisms to verify generated response con-
tent based on knowledge and worldview could ad-
dress such issues. However, under current API
constraints (maximum 2 calls per utterance), addi-
tional API calls for verification and correction are
difficult.

5.3 Future Directions

Based on limitations identified in this effort, we
present the following future improvement direc-
tions:

Dynamic context selection: To address token
efficiency issues (Section 5.2), rather than uncon-
ditionally including full dialogue history, a mecha-
nism to dynamically select only history highly rele-
vant to the current utterance is needed. Embedding-
based similarity calculation or prioritization of his-
tory through importance scoring could be consid-
ered.

Error detection and correction mechanisms:
To mitigate error propagation (Section 5.2), mech-
anisms are needed to verify function call results
and appropriately handle errors detected in the re-
sponse generation stage. While complete retries are
difficult under current API constraints (maximum

2 calls), it is possible to pass error information
to response generation and generate appropriate
responses such as “Information could not be re-
trieved.”

Hallucination detection and countermeasures:
Leveraging game environment characteristics, func-
tion calling errors can be used as clues for de-
tecting hallucinations (Section 5.2). Grounding
mechanisms that verify generated responses against
knowledge and worldview, or approaches to pre-
vent hallucinations in advance by learning function
calling failure patterns, could be considered.

6 Conclusion

This technical report presented our approach to
the CPDC 2025 API Track. The API Track con-
strains use of GPT-40-mini, requiring performance
improvements through prompt engineering. Build-
ing on the two-stage architecture of the provided
starter kit, we engaged in iterative improvements
through comparison with gold responses.

For Task 1, we improved function calling accu-
racy through extended conversation history, world-
view information addition, and few-shot example
introduction, with extended conversation history
particularly improving scores from 0.416 to 0.512
(+0.096). For Task 2, we organized hierarchi-
cal prompt structures, improved response concise-
ness, and promoted proactive information provi-
sion, with response conciseness bringing similar
improvements to both tasks (each +0.007).

In the final evaluation, we achieved 2nd place in
Task 2. We obtained 2nd place in Knowledge Rank,
confirming the effectiveness of prompt design uti-
lizing context information, while Response Rank
remained at 5th place, suggesting that response
quality involves multifaceted elements.

Through this effort, we clarified: (1) effective-
ness of two-stage architecture and iterative prompt
refinement, (2) that improvement effects differ
by task, (3) importance of response conciseness.
Future challenges include dynamic context selec-
tion, error detection mechanisms, and hallucination
countermeasures. We hope that the outcomes of
this research will serve as a useful reference for
developing game NPC dialogue systems under API
constraints.
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A Few-shot Prompt Examples

The following examples were used in the few-shot
prompt for function calling:

# Examples
You can refer to the following examples to
understand how to respond.

## Example 1

user: I've been using basic daggers, but
they're not ideal when visibility is poor.
Any suggestions for a magic user?

gold_functions: [{"name"”: "search_item",
"parameters”: {"item_description”: "a more
reliable weapon for night missions|Ideal
when visibility is poor|something for a
magic user”}}]

## Example 2

user: I've seen it displayed. I wonder why it
would be particularly useful during
autumn...Anyway, what's its attack power
and why would it be good for misty weather?

gold_functions: [{"name": "check_attack”,
"parameters”: {"item_name": "Man Gauche"}},
{"name": "check_description”, "parameters":
{"item_name": "Man Gauche"}}]

## Example 3

user: That's perfect for my budget. I'll take
it.

gold_functions: [{"name": "sell”, "parameters”:
{"item_name": ["Long Bow"]}}]

## Example 4
user: Yeah, I'll do that. I want to try it out

right away.
gold_functions: [{"name": "equip”,
"parameters”: {"item_name": "Short Sword"}}]

## Example 5

user: How about something at level C or higher?
I want a challenging quest with a good
reward.

gold_functions: [{"name"”: "search_quest”,
"parameters”: {"quest_level”:
"C|challenging”, "quest_level_operator”:
"or above”, "quest_reward”: "high"}}]

## Example 6

user: I'm considering the Commercial Escort
quest. Do you have any insights for an
experienced adventurer like me?

gold_functions: [{"name"”: "check_basic_info",
"parameters”: {"quest_name”: "Commercial
Escort”}}]

## Example 7
user: Got it. How many days should we plan for
this? I'd like to hear your thoughts on how

to prepare.

gold_functions: [{"name": "check_duration”,
"parameters”: {"quest_name"”: "Commercial
Escort”}}, {"name": "check_description”,
"parameters”: {"quest_name"”: "Commercial
Escort”"}}]

## Example 8
user: That quest sounds better to me. I would
like to select the quest 'Exterminating

Giant Rats'.

gold_functions: [{"name":
"select_request_confirm”, "parameters”:
{"quest_name"”: "Exterminating the Giant
Rats"}}]

## Example 9
user: Yes, I am selecting quest 'Exterminating

Giant Rats'.
gold_functions: [{"name”: "select”,
"parameters”: {"quest_name”: "Exterminating

the Giant Rats"}}]

## Example 10
user: I am prepared. I would like to begin the

quest now.
gold_functions: [{"name": "start"”,
"parameters”: {"quest_name"”: "Exterminating

the Giant Rats"}}]

B Complete System Prompt

The final system prompt template used for response
generation:

# Instruction

You are an assistant that plays the role of a
character

in a video game.

{role}

Use the following character settings and
knowledge to

create your response.

Please keep your response short (no more than
three

sentences).

Infer the underlying needs or intentions from
the

player's statements and proactively provide
relevant

information.

# Character Settings: You should act as the
following

character.

{character_setting}

# Knowledge

There are two parts of knowledge. The first
part is

the specific knowledge obtained from the
function calls.

The second part is the general knowledge of all
items

involved in the dialogue.



## Knowledge from Function Calls

{function_knowledge if function_knowledge else

"No specific knowledge obtained from function
calls.”}

## General Knowledge of All Items
{general_knowledge}

# State: It describes the current state of the
video game.
{state_info}

# Worldview: It describes the setting of the
world in

the video game.

{worldview}
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