
Trace is the New AutoDiff — Unlocking Efficient
Optimization of Computational Workflows

Ching-An Cheng∗

Microsoft Research
chinganc@microsoft.com

Allen Nie∗
Stanford University
anie@stanford.edu

Adith Swaminathan∗

Microsoft Research
adswamin@microsoft.com

Abstract

We study a class of optimization problems motivated by automating the design and
update of AI systems like coding assistants, robots, and copilots. We propose an
end-to-end optimization framework, Trace, which treats the computational work-
flow of an AI system as a graph akin to neural networks, based on a generalization
of back-propagation. Optimization of computational workflows often involves rich
feedback (e.g. console output or user’s responses), heterogeneous parameters (e.g.
prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a
score). Moreover, its computation graph can change dynamically with the inputs
and parameters. We frame a new mathematical setup of iterative optimization,
Optimization with Trace Oracle (OPTO), to capture and abstract these properties so
as to design optimizers that work across many domains. In OPTO, an optimizer re-
ceives an execution trace along with feedback on the computed output. Trace is the
tool to implement OPTO in practice: Trace has a Python interface that efficiently
converts a computational workflow into an OPTO instance using a PyTorch-like
interface. Using Trace, we develop a general-purpose LLM-based optimizer called
OptoPrime that can effectively solve OPTO problems. In empirical studies, we
find that OptoPrime is capable of first-order numerical optimization, prompt opti-
mization, hyper-parameter tuning, robot controller design, code debugging, etc.,
and is often competitive with specialized optimizers for each domain. We believe
that Trace, OptoPrime and the OPTO framework will enable the next generation
of interactive agents that automatically adapt using various kinds of feedback.
Website: https://microsoft.github.io/Trace/.

1 Introduction

Computational workflows that integrate large language models (LLMs), machine learning (ML)
models, orchestration, retrievers, tools, etc., power many state-of-the-art AI applications [1]: from
chatbots [2], coding assistants [3], robots [4], to multi-agent systems [5]. However designing a
computational workflow requires laborious engineering because many heterogeneous parameters (e.g.
prompts, orchestration code, and ML hyper-parameters) are involved. Moreover, after deployment
any erroneous behaviors of the workflow persist unless a developer manually updates it.

We study a class of optimization problems motivated by automating the design and update of compu-
tational workflows. Computational workflows produce optimization problems with heterogeneous
parameters, rich feedback (e.g. console output and user’s verbal responses), and intricate objectives
(beyond maximizing a score). Moreover, a workflow can have interdependent steps (e.g. adaptive or-
chestration, feedback control loops) and/or involve semi-black-box operations whose behavior cannot
be succinctly captured(e.g. ML models, simulations). As a result, the structure of the computation
may change as the parameters and the inputs of the workflow vary.

∗Equal contribution

Preprint. Under review.

https://microsoft.github.io/Trace/

	Introduction
	Toward Efficient End-to-End Optimization of Computational Workflows
	Example of Trace in Action
	A New World of Mathematical Optimization

	Optimization with Trace Oracle
	Problem Definition of OPTO

	Trace: The New AutoDiff
	Design of Trace
	Forward Step: Constructing OPTO Problems with Trace
	Backward Step: Realizing the Trace Oracle

	Design of the First OPTO Optimizer
	Experiments
	Validating with Numerical Optimization
	Tuning Hyperparameters to Orchestrate Complex Systems
	Unifying Prompts and Functions Optimization
	Long-Horizon Robot Manipulator Control

	Limitations
	Conclusion and Future Work
	Perspective: Deep Agent Workflows
	Related Work
	Experiment Details
	Battleship
	Numerical Optimization
	Traffic Control
	BigBench-Hard
	LLFBench Meta-World

	Examples of OPTO
	Trace Handles Error in Execution as Feedback
	Analysis of Trace
	Proof of Complexity
	Proof of Lower bounds

	When is OPTO Efficiently Solvable?
	What is a solution?
	Does a solution exist?
	Can OPTO be efficiently solved?

	Additional Details of Trace and OptoPrime
	Backward Step of Trace
	Prompts used in OptoPrime

	Examples of the Optimized Parameters in the Experiments



