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Abstract
Text-adventure games and text role-playing
games are grand challenges for reinforcement
learning game playing agents. Text role-
playing games are open-ended environments
where an agent must faithfully play a particular
character. We consider the distinction between
characters and actors, where an actor agent
has the ability to play multiple characters. We
present a framework we call a thespian agent
that can learn to emulate multiple characters
along with a soft prompt that can be used to di-
rect it as to which character to play at any time.
We further describe an attention mechanism
that allows the agent to learn new characters
that are based on previously learned characters
in a few-shot fashion. We show that our agent
outperforms the state of the art agent frame-
work in multi-character learning and few-shot
learning.

1 Introduction

Text adventure games are those in which a player
can only interact with an interactive environment
through reading text descriptions of the environ-
ment and acting by typing descriptions of actions.
Text games present a grand challenge for AI be-
cause they (a) are partially observable; (b) have
combinatorially large state spaces consisting of all
possible descriptive text strings; (c) have combina-
torially large action spaces in the order of billions
of possible text commands; (d) require reasoning
about long-horizon causal dependencies; and (e) re-
quire commonsense and narrative trope reasoning
[Hausknecht et al., 2020]. Text adventure game
playing has become a benchmark challenge for
Reinforcement Learning (RL) agents [Hausknecht
et al., 2020, Narasimhan et al., 2015, Ammanabrolu
and Riedl, 2019, Ammanabrolu and Hausknecht,
2020, Ammanabrolu et al., 2020, Adhikari et al.,
2020], which play by exploring the environment
and receiving score based on how far they make it
through the game.

Dungeon
You are in the Dungeon. It is dark and gloomy...
...
There is a skeleton here.
There is a path south, a path east, and a path west.
You have a sword, a shield, and a tattered map.
Previous action: Go west

Prompt: 
<0.1656, -0.2891, -0.2251, ..., -0.3157, 0.2262, 0.2698>
You are an adventurer

You hit the skeleton! The skeleton died!
...

As an adventurer, the best action
for me to take is hit skeleton

Action Thief Adventurer Rogue

hit skeleton
drop sword
pickpocket skeleton
go east
...

Figure 1: A Thespian Agent can act out a number of
different characters by being provided a prompt that
indicates which character it should emulate at the time.

Relatedly, table-top role playing games, such
as Dungeons & Dragons, involve multiple players
that interact with textual descriptions of the en-
vironment as well as dialogue with other players.
While players may be motivated by a quest or mis-
sion, table-top role playing games are fundamen-
tally open-ended, meaning that players can interact
with the environment and with each other in ways
that are not strictly dictated by a quest, mission, or
set of puzzles. Open-ended role-playing extends
the same challenges of text adventure games but
removes the environmentally-dictated reward struc-
ture. The predominant question for open-ended
role-playing is whether an agent acts consistently
with a given character definition.

Because there may be no explicit reward associ-
ated with progression in open-ended role playing
games, an agent must instead be trained to, at least,
emulate particular character types such as “thief”



or an “adventurer”, each of which has preferences
for different actions depending on the situation.1

In this paper we consider the distinction between
character agents and actor agents. A character
agent is trained to act like one specific character;
for all intents and purposes it is that character and
knows nothing else but how to be that character. In
contrast, an actor agent has knowledge about how
to play many different characters and can receive
instruction from an external source (for example a
movie director or a dungeon master) about which
character type to play.Furthermore, an actor can
leverage the character knowledge to learn to blend
characters with only a small amount of additional
practice (e.g., few-shot learning) without exhaus-
tively re-training from scratch. We refer to actor
agents as thespian agents to distinguish between
agents that learn to enact multiple characters from
the actor-critic RL architecture.

This paper considers two challenges. The first
is to train a single RL agent model that can switch
between character types with a simple instruction.
We present a new RL agent that can learn to em-
ulate multiple characters simultaneously with an
updated policy model that generates |C| sets of
action distributions, where C is a set of character
classes. The agent also learns a soft prompt that
can later be provided as a cue to emulate a specific
character.

The second challenge is to be able to train a thes-
pian agent to learn new characters in a faction of
the training time while maintaining performance in
the previously trained characters. We achieve this
by adding an attention mechanism to the outputs
of the the thespian agent, which can choose which
can learn how to blend the action probabilities of
different characters, thus learning a new character
and a new soft prompt.

To return to our character vs. actor metaphor,
we now have an thespian model that can simultane-
ously generate different actions for different charac-
ters. This is equivalent to a thespian thinking about
how different characters will respond to the same
situation. The thespian agent receives direction in
the form of a prompt indicating what character to
play. If the thespian needs to play a new character
that it has never played before it can learn a new
prompt for the character much faster than if it had
to learn from scratch by leveraging what it already

1This is a simplification of table-top role-playing games
that can feature unique character personalities and backstories.

knows about playing other characters.
We conduct experiments across two original

character types, a “thief” and an “adventurer” and
demonstrate the ability of a single thespian agent
trained on both characters to perform as well as
separate baseline models trained to emulate indi-
vidual characters. We show that we can use a novel
attention mechanism to learn a third character that
is a blend of the previously trained characters in a
few-shot fashion. This few-shot character learning
is 10x faster than baseline alternatives and doesn’t
degrade the performance of original characters.

2 Background and Related Work

The distinction between characters and actors have
been made before. Louchart and Aylett [2007] con-
sider an actor agent one that makes a secondary
assessment of its own cognitive and emotional
state. Riedl [2003] consider an actor agent one that
doesn’t just reason about the best action to convey
a character but also incorporates directorial goals.
Si et al. [2005] consider an actor agent one that rea-
sons about the cognitive state of other interlocutors
in an interactive game; they also referred to their
agent as a thespian. These prior works looked at
acting as meta-cognition, but agents could not rep-
resent more than one character without retraining
or reprogramming. While our work can also be
considered a form of meta-cognition, our focus is
on a single model trained to be able to reason about
and enact different characters.

2.1 Text Adventure Game Playing Agents

Text adventures are games in which the player must
read textual descriptions of the environment and
describe their actions with short text commands.
Most text adventure games have a narrative pro-
gression through puzzles toward an ultimate goal
or conclusion. Text based games have shown
great potential for use as RL benchmark environ-
ments [Hausknecht et al., 2020, Narasimhan et al.,
2015]. Ammanabrolu and Riedl [2019] proposed
augmenting RL with knowledge graphs as exter-
nal memory about world state. Ammanabrolu and
Hausknecht [2020] proposed KG-A2C, which inte-
grates knowledge graphs into the actor-critic [Bah-
danau et al., 2016] RL framework. The Q*BERT
agent [Ammanabrolu et al., 2020] further extended
KG-A2C to incorporate the BERT [Devlin et al.,
2019a] language model into the model architec-
ture. We build on top of the KG-A2C family



of models since they have shown state-of-the-art
performance. Other techniques for playing text-
based games include GATA [Adhikari et al., 2020],
which builds a knowledge-graph based represen-
tation of the world on top of a transformer-based
agent, training through a combination of RL and
self-supervised learning.

Whereas text adventure games have pre-defined
progression toward a goal state, table-top role play-
ing games involve open-ended game play. We refer
to text-based environments that support open-ended
game play as text-based role playing to signify the
interaction with the environment through reading
and writing text instead of verbal interactions with
other players and game masters.

The LIGHT environment [Urbanek et al., 2019]
is a crowdsourced text-based role playing game
with a rich environment with interactable Non-
Player Characters (NPCs), objects and locations,
each with a short paragraph description, demon-
strating the value of grounding in training agents
can both act and converse successfully. Am-
manabrolu et al. [2021] propose agents that can
switch seamlessly between generating natural lan-
guage and action declarations.

Story Shaping [Peng et al., 2023] is a technique
for training RL agents to play text role-playing
games wherein a story is converted into a rich re-
ward signal. The technique can be used to train dif-
ferent characters, but can only train a single agent
to emulate a single character. Our character-based
reward strategy is related, but our rewards are man-
ually crafted instead of inferred from stories.

2.2 Few-Shot Adaptation
Large pre-trained Language models have emerged
as extremely powerful tools for NLP tasks[Devlin
et al., 2019b, Raffel et al., 2020, Brown et al., 2020].
However, a limitation of these powerful models is
their size, some with parameters numbering in the
billions [Brown et al., 2020]. This makes them pro-
hibitively expensive when it comes to further train-
ing or fine-tuning. Low-Rank Adaptation (LoRA)
circumvents this by keeping the model frozen and
introducing trainable rank decomposition matrices.
Our proposed technique also freezes the core model
and trains additional layers on top, though the spe-
cific mechanics needed for RL are different.

Prompt-tuning also avoids the need to do further
training on the model itself by introducing train-
able, soft prompts that learn an ideal input based
on the desired output [Lester et al., 2021]. [Peng

et al., 2022] proposes pairing soft prompts with
an attention module to induce language models to
perform different tasks. Using knowledge from a
previously trained task to improve learning on a
new task has also been explored by [Zhao et al.,
2021], their approach more focused on generaliza-
tion across simpler objectives and adaptation to
unseen environments.

3 Preliminaries

3.1 Textworlds as RL Testbeds

A text-adventure or text-based role playing
game can be modeled as a partially-observable
Markov decision process (POMDP) M =
⟨S, T,A, ω,O,R, γ⟩ where S is the set of ground
truth world states, A is the set of actions, T is
the probability of transitioning from one state to
another given an executed action, R is a reward
function, O is the set of possible observations, ω is
the probability of observations given the ground
truth world state, and γ is a parameter estimating
the reward horizon [Hausknecht et al., 2020]. In
our setting, we will use a deterministic transition
function T , which is common in text-based games.
However, nothing in our proposed technique
strictly requires it. The objective of RL is to learn a
policy, π : S → A that maps states to actions, such
that taking the action mapped to the current state
and following the policy henceforth maximizes
expected reward.

3.2 LIGHT

Our agent is trained in the LIGHT environment [Ur-
banek et al., 2019], a text world environment with
a database of 1775 NPCs, 663 locations, and 3462
objects with rich text descriptions. Game maps can
also be handcraft with specifically placed NPCs,
locations and objects. We create a map for our ex-
periments such that multiple character types have
relevant activities to perform.

Our experiments use base character types of
“Thief” and “Adventurer”. We also associate re-
wards to different actions for each character type.
For example, a “Thief” character agent is rewarded
for obtaining a hidden dagger, stealing, and other
thief-like actions. Similarly, an “Adventurer” char-
acter agent is rewarded for obtaining a sword and
armor from the armory, killing monsters, and other
adventurer-like actions. There is no requirement
that an agent do particular actions and no pre-
scribed order. This is equivalent to the Story Shap-



ing technique[Peng et al., 2023] , except the re-
wards are manual, which is done to make more
controlled experiments. Regardless of character,
all games terminate when the agent enters a partic-
ular, preset “goal room”, at which time the agent re-
ceives a final reward that is smaller than the others.
The entire game map is provided in the appendix.

3.3 KG-A2C
We build off the KG-A2C agent framework [Am-
manabrolu and Hausknecht, 2020], an Advantage-
Actor Critic architecture augmented with a
knowledge-graph based attention. KG-A2C’s
space of observations includes (a) text description
of the room the agent is in via the “look” command,
(b) text descriptions of the character’s inventory via
the “inventory” command, (c) the agent’s last com-
mand, and (d) feedback from the last command.
The state observations are concatenated and em-
bedded using a recurrent GRU. More details about
the KG-A2C can be found in the appendix.

4 The Thespian Agent

Building off the basic framework of KG-A2C we
describe how a single agent policy model can learn
to emulate multiple characters. To train an single
model to emulate different characters, it must be
rewarded differently for each character, which can
confuse an agent unless it has a way of disentan-
gling the characters. Our thespian agent architec-
ture addresses this challenge in two ways. First, we
provide a means to learn soft character prompts.
These are unique codes that are associated with
different characters and can be provided as input to
indicate which character the agent should emulate.
Second, we change the actor and critic heads to
generate sets of logit scores for all learned charac-
ters. Thus the agent can reason about which actions
are best for each character, and we can sample from
the set of logits for which ever character we want
to execute. Figure 2(left, green box) shows the
thespian agent, focusing on the these two aspects.

4.1 Character Prompts
First, we allow for a soft character prompt to be
learned. Each prompt is associated with different
character the model has been trained to emulate
and induces the agent to generate behavior that is
consistent with the associated character. This is
similar to the notion of the soft prompt[Lester et al.,
2021], which is like a regular prompt for LLMs but
given as an embedding instead of natural language.

The soft character prompt vector of values can be
interpreted as an instruction analogous to saying
“I am in state x and I am a Thief. My next action
would be...” at the embedding level.

Let P =
[p1...
pn

]
be a set of soft character

prompts for each character ci ∈ C and let o be
the embedded current state observation. Initially,
the prompts pi are empty, initialized with random
numbers. The internal state representation si for
character ci is:

si = W T
i × cat(o,pi) (1)

where W is a set of trainable weights.
The soft character prompts are learned as fol-

lows. During training, the agent will engage in RL
games as normal. In each game, the agent will be
provided with a different reward function for each
character ci. That is, a thief will be rewarded for
certain actions and an adventurer will be rewarded
for different actions. The character, corresponding
character reward function, and character prompt
pi are rotated each game to balance the training of
multiple characters. Over time, each soft prompt
is updated via gradient flow through W such that
each unique prompt is associated with a particular
way in which the agent is rewarded.

4.2 Character-Specific Action Scores
We also modify the agent model’s actor and critic
modules. The standard A2C framework produces
logit scores for each action. This vector of logit
scores is traditionally converted to a probability
distribution with a softmax layer and sampled to de-
termine which action the agent takes. Our thespian
agent model instead produces a stack of action logit
scores. A softmax over this stack of logits produces
n probability distributions, for n characters. The
critic head is likewise modified to produce n pre-
dicted utility scores, one for each character. Thus,
the agent simultaneously determines which action
is best for each character and how good the current
state is from the perspective of each character.

At training time, the characters are rotated each
game and the ith set of logit scores is sampled
to determine the agent’s action, and the ith utility
value is used to compute character-specific advan-
tage loss. The loss is backpropagated through only
the logits and utility used.

5 Thespian Agent Experiments

In this section we evaluate the thespian agent with-
out the additional few-shot learning attention mech-
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Figure 2: The Thespian Attention takes in the embedded observations and the stacked logits, calculating an attention
score per character for each observation. When training the Thespian Attention, the blue-shaded boxes indicate
frozen modules with red-shaded boxes being trainable modules.

anism in order to determine the extent to which the
agent can learn more than one character at a time.
In this experiment we train a single agent to em-
ulate two characters: thief and adventurer. We
execute the agent in the same general environment
that has multiple opportunities for thief-specific
actions and adventurer-specific actions. The en-
vironment (see Figure 4 in the Appendix) has a
common starting room and an exit room that termi-
nates the game when the agent enters it. There are
a cluster of thief-specific and adventurer-specific
rewards clustered near the starting room. The envi-
ronment then branches with one branch heading to
areas that only contain thief-specific rewards and
another branch heading to areas that only contain
adventurer-specific actions.

The thespian agent is trained as follows. We
create empty prompts for thief and adventurer. We
train on one character reward, accompanied by the
character prompt, for two games, then switch to the
net character reward and character prompt for two
more games. A game completes when the agent
navigates to the exit room as described in Section
3.2. We train for a total of 10,000 games and use the
checkpoint with the highest performance on 20 test
game runs, split equally between each character.

We evaluate the agent in the same environ-
ment, executing the agent with with each character
prompt one at a time. We measure the percentage
of total character-specific action opportunities the
agent takes. We run each character prompt for 100
games with different initialization seeds and take

the average result.
We compare to a baseline KG-A2C trained with

the same training method (but without the prompts
since the base KG-A2C architecture would not un-
derstand them), as well as the thespian agent with
a prompt made of random numbers.

Table 1 shows the results. The base KG-A2C
when trained only on thief rewards or adventurer
rewards is able to achieve most of the character-
specific score. The base agent trained on one char-
acter rarely attempts to perform actions specific
to another character, which is to be expected and
demonstrates that the environment setting is fair
if the objective were to only train one character
at a time. However, when the base KG-A2C is
trained with both character rewards, the agent’s per-
formance relative to both characters suffers. The
resulting agent also attempts to get all rewards, re-
gardless of character, thus failing to differentiate
between characters.

In comparison, thespian agent uses a single
model and that single model scores well has a high
thief score when given the thief prompt and a high
adventurer score when given the adventurer prompt.
The thespian agent rarely attempts actions that are
specific to a non-prompted character. Despite being
trained on multiple character rewards, the thespian
agent achieves performance equivalent to the base
model trained on only one character. Please see the
appendix for a graph of the learning curve of the
single thespian agent training on both characters
versus a single base KG-A2C training on both char-



acters using the same character rotation scheme.
When the thespian agent is given a random

prompt, it scores poorly as either character. There
may be a bias in the environment that leads the
agent to prefer the branch that contains more ad-
venturer score, explaining why the agent obtains
more adventurer rewards.

6 Few-Shot Learning with Thespian
Attention

The thespian agent is a single agent that can be
trained to emulate many different characters by pro-
viding one of the learned prompts as a cue for how
to behave in an open-ended fashion. In this section
we consider the question of whether a pre-trained
thespian agent can learn a new character that draws
on knowledge of previously learned characters.

Given a thespian agent that has been trained on
n characters, training the n+ 1th character poses
challenges. Training on the n+ 1th character, with
a new reward runs the risk that the agent forgets the
previous n characters. This is a commonly known
phenomenon with fine-tuning any type of model. It
is typically a desired phenomenon when we wish to
update the model to a new behavior that overwrites
the pre-trained behavior. However, in this case,
we wish to preserve the ability to execute previous
behavior while adding new behavior.

Our approach is to freeze the thespian agent
model and add a module (see Figure 2 right, yel-
low) with learnable weights that operate on the
original, frozen model’s outputs. Since we seek to
teach the agent a new character that is a blend of ex-
isting characters, we apply an attention mechanism
across the action logit scores for each character.
This attention module learns to blend the raw logit
scores for each characters to produce a single final
action probability distribution.

Specifically, we adapt the attention module from
Peng et al. [2022]—used for few-shot learning in
LLMs—to the RL setting.2

6.1 Thespian Attention

Let O =

[ olookoinvoprev
ofback

]
represent the stacked observa-

tion component embeddings, which is fed through
a feed-forward network, projecting it to a new, non-

2In place of the embedded token sequence, we use the em-
bedded observation tensors ot but do not perform a maxpool
over the embedded observations as they are much smaller than
the token sequences used in Peng et all’s model ensemble

linear representation space,

hO = LN(W T
FF2 × γ(W T

FF1 ×O)) (2)

with γ as a non-linear activation function, WFF1

and WFF2 as trainable weights, and LN(·) is a
Layer Norm [Ba et al., 2016].

The action logits ai for all characters ci ∈ C pro-
duced by the frozen thespian agent are stacked as
A =

[a1...
an

]
and also fed through a feed-forward

network identical to Equation 2 to obtain hA. To
obtain the final set of attention scores for each ob-
servation we perform a matrix multiplication be-
tween hO and hA. We divide by a constant m
that applies a temperature-like smoothing before
applying a softmax layer to obtain the matrix of
attention scores,

S = softmax
(hO × hA

m

)
(3)

with c being some character (pre-trained or being
learned few-shot). The final weighted averaged
logits for the action is:

pfinal = softmax(αobs × ST ×A) (4)

where αobs is a vector of scaling coefficients for
olook, oinv, oprev, and ofback, the look, inventory,
previous action, and previous action feedback com-
ponents of the state observation, respectively.
αobs is a hyperparameter that allows us increase

the influence of different parts of the observation.
They can be equal and sum to one to have a uniform
averaging effect, or be used to increase or decrease
the contribution of each component of the state
observation. Setting the coefficients > 1.0 loads
greater probability mass onto the highest-scoring
action score logits. This has the effect of making
the agent more “exploitative” when sampling from
the probability distribution over actions.

The result is that the thespian attention learns
the optimal weights to calculate the contribution
of each pre-trained character in determining an
action for the new character in the current state
with respect to each observation tensor.

Since the KG-A2C base splits action generation
into verb and object selection, the above process
is repeated for the verb and the object to produce
one probability distribution for the verb and one
distribution for the object. The sampled verb and
sampled object are combined using the KG-A2C
template approach described in Appendix A.4.



6.2 Few-Shot Training

The traditional actor-critic loss is computed as the
difference between the agent’s predicted value of
an action and the true expected value. The thespian
agent produces a real-numbered utility value pre-
diction for each character. Rather than perform a
weighted average with the attention scores as we
did for the action logits, we take the average of
the predicted values of the state from the new char-
acter’s perspective and the predicted value of the
most influential pre-trained character. This is the
pre-existing character that the agent thinks has the
best chance of receiving reward even though the re-
ward function is for a new character. Thus loss is a
function of how much better the thespian attention
can pick an action for the new character over the
best chance if it played a pre-existing character.

The thespian agent can now be trained as be-
fore, by providing a new character reward and
an empty prompt. With the core thespian agent
weights frozen, the agent will retain the ability to re-
spond to existing character prompts. The thespian
agent will learn new weights in the feed-forward
networks that combine the existing characters ac-
tion logits. We no longer need to specify which set
of character action logits to sample from. It will
also learn a new prompt for the new character.

7 Few-shot Experiments

The thespian attention uses far fewer parameters
than the core agent. Therefore we test the ability
to train the thespian attention module to learn a
new character in fewer training steps versus train-
ing from scratch. Given a frozen thespian agent
pre-trained to respond to the thief and adventurer
prompts, we train a new character—a “Rogue”—
that excels at both thieving and adventuring. To
demonstrate few-shot learning, we limit the total
training steps to 3,000.

We created three variations of the environment
that differ in how the character-specific activities
are arranged throughout the map. See the appendix
for more details. These alternative maps demon-
strate robustness to alternating conditions in the
environment that require either knowledge about
how to act as a thief or knowledge about how to act
as an adventurer. For all characters, the maximum
score the agent can achieve is 47 and all characters
share the same exit room. We use the total score
achieved as a measure of how well the thespian
attention allows the agent to learn a new character

based on the pre-trained characters.

7.1 Baselines
We compare two agents, both trained on a new
“Rogue” reward, that rewards the agent for a union
of thief-specific and adventurer-specific actions:
Our Thespian Attention Agent, a pre-trained thes-
pian agent with frozen weights and the few-shot
attention mechanism and a Unfrozen Thespian
Agent, the same pre-trained thespian agent but with
unfrozen weights and no attention mechanism.

For the thespian attention agent, we measure the
total “rogue” game score after each step. For the
unfrozen agent, we measure the total “rogue” game
score as well as just the thief score and just the
adventurer score. Whereas the thespian attention
agent is frozen and cannot lose its ability to emulate
a thief or adventurer (character prompt and internal
weights are unchanged), the unfrozen agent may
lose its ability to emulate the thief and adventurer
as it trains on the “rogue” reward.

7.2 Results
Figure 3 shows the total cumulative score for the
thespian attention agent and unfrozen agent, aver-
aged across five training runs each. In all three
maps, the thespian attention agent training a new
“rogue” prompt outperforms the unfrozen agent
training a new “rogue” prompt. In the adventurer-
first and alternating maps the thespian attention
agent has converged by 1,500 steps.

The unfrozen agent training a new “rogue”
prompt fails to converge within the allotted time.
The unfrozen agent converges after 15,000 steps,
10x slower than the frozen thespian agent with at-
tention mechanism, though it does match the per-
formance eventually. We also see that the unfrozen
agent quickly loses its ability to emulate the plain
thief and plain adventurer. The unfrozen agent can
be trained using a rotation of games for all charac-
ters. When this is done it takes in excess of 40,000
steps to before the it converges on a model that can
play all three characters.

The reason the thespian attention agent does not
do as well on the thief-first map as the others is
because of bias introduced in the pre-training. Be-
cause the training regimen alternates characters, it
trains on the “thief” character last. This makes the
thespian agent slightly overfit to the thief character
(relative to the adventurer). While this might seem
like it might give it an advantage on the thief-first
map, in means that it takes longer to encounter non-
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Figure 3: Scores of the thespian attention versus unfrozen agents for each game. ’X-first’ indicates that the actions
associated with character ’X’ were encountered closer to the starting room. The red and blue lines represent the
score of the unfrozen agent on the “Thief” and “Adventurer” games when provided the respective prompt. We see
that in all cases, the unfrozen agent’s performance in the pre-trained characters suffers. While not yet converged, we
also see the thespian attention train faster than the unfrozen agent.

Experi-
ments

Thief
Score
%

Thief
std.dev

Adv
Score
%

Adv
std.dev

Avg-
Game
Steps

Base KG-A2C
Thief-Only 93.2 9.3 3.8 0 24.7
Adv-Only 3.8 0 99.3 4.8 33.4

Both trained 88.2 10.3 68.6 7.8 33.1
Thespian agent

Thief Prompt 92.9 17.4 3.8 0 22.1
Adv. Prompt 4.3 0 99.1 11.1 32.2
Rand. Prompt 10.7 12.8 72.7 37.5 26.5

Table 1: Performance of the base KG-A2C trained in dif-
ferent conditions and a single thespian model respond-
ing to different prompts.

thief “rogue” rewards; the encounter of early thief
rewards reinforces this by placing more attention
weight on thief action logits.

8 Ablation Studies

We investigate three alternative ways to incorporate
attention into the thespian agent. The first two, fo-
cusing on attention over a weighted average of the
soft character prompts and a weighted average of
the soft character prompts plus state observations,
resulted in agents that failed to learn a new charac-
ter. The agent would choose actions that went with
the most attended prompt and would never achieve
blending. This is because the attention layer would
just act as a scalar on the inputs.

The third alternative would have used a softmax
layer to convert action logits to a probability dis-

tribution before being fed into the attention mech-
anism. In all cases, this variation was inferior to
operating on raw logits. The softmax conversion of
raw logits to a probability distribution smooths the
values, making it harder to discriminate between
actions. Manipulating the logits allows for the bi-
ases of the individual character prompts to be more
faithfully preserved.

9 Conclusions

In this paper, we make the distinction between char-
acter agents and actor agents. A character agent
learns a model of a single character. An actor, or
thespian, agent learns a model of multiple charac-
ters and can take direction through a soft prompt
about which character to emulate at any given time.
Our formulation of a thespian agent is further able
to reason about which actions would be appropriate
to each character.

The production of different action logit scores
for different characters allows us to add an addi-
tional attention mechanism that learn new charac-
ters that remix previously known characters in a
few-shot fashion. This is shown by training a new
character that can take on the behavioral character-
istics of previously known characters to respond to
new circumstances in the environment.

In the context of text role-playing games, a grand
challenge for AI[Callison-Burch et al., 2022], this
work presents a step toward open-ended agents
with disentanglable behavior policies.
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.1 LIGHT Map

A Appendix

Figure 4 shows the entire LIGHT map layout used
for experimentation.

A.1 Training Details
While most other hyperparameters are kept the
same, we increase the learning rate while decreas-
ing the value loss for the thespian attention. De-
spite the new prompt and the Attention Module
having comparably a smaller number of trainable
parameters, we also train over a much smaller num-
ber of steps to emulate Few-Shot training. Where
thespian agent allowed to train to completion over
10,000 games, we constrain the thespian attention
to only 3000 steps, which for a well performing
agent could be potentially 150 games but could
also potentially only be 40 games for a nonper-
forming agent, depending on the number of steps
the agent takes within a game. While we found
a higher learning rate hinders the thespian agent,
for the thespian attention the higher learning rate
benefited the agent due to the agent having already
learned and being constrained to a smaller, more
optimal set of actions.

We also lower the coefficient of the value loss as
well as changing how the value is calculated. As
the Critic is frozen, we know it will always output
the wrong reward value for any “Adventurer" or
“Thief" action that isn’t included in the new char-
acter. This results in large amounts of unnecessary
loss that throws off the fusion agent during training.
However, the value loss cannot be removed com-
pletely as it comprises the vast majority of the loss
due to the pre-training of the thespian agent prior
to the thespian attention.

A.2 Map details
• Thief-first map: all the thief-specific activ-

ities are arranged close to the starting room
while all the adventurer-specific activities are
closer to the exit room.

• Adventurer-first map: all the adventurer-
specific activities are arranged close to the
starting room while all the thief-specific activ-
ities are closer to the exit room.

• Alternating map: the character-specific activ-
ities alternate between thief and adventurer as
the agent progresses farther from the starting
room.

A.3 Thespian versus single KG-A2C
Figure 5 shows the learning curve of the single
thespian agent training on both characters versus
a single base KG-A2C training on both characters
using the same character rotation scheme.

A.4 Further KG-A2C Details
In addition to being processed by the GRU, simul-
taneously, the state observation is used to update
a knowledge graph of facts about the world that
have been observed to date. This includes facts and
relations about rooms, objects in rooms, inventory
items, etc. This knowledge graph is then embed-
ded using a graph attention mechanism [Veličković
et al., 2018].

Advantage-actor critic networks [Mnih et al.,
2016] have two heads. The actor head generates
logit scores, one for each possible action, which
can be converted to a probability distribution via
softmax and sampled to determine which action
the agent takes. The critic head estimates the utility
of the state. Actions are made up of verbs and op-
tional object names. The KG-A2C agent generates
a verb, which maps to a pre-defined template, and
the generated object name is used to populate the
template.
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Figure 4: LIGHT Map

Sc
or
e

Episodes
Thespian Agent KG-A2C

Figure 5: We see the thespian agent achieves conver-
gence after about 4,000 episodes where the KG-A2C
still struggles to perform even after 10,000 episodes.
The thief has a maximum score of 52 where the ad-
venturer has a maximum score of 57. As can be seen
KG-A2C gets trapped in a local maximum.
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