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Abstract

Building embodied AI systems that can follow
arbitrary language instructions in any 3D envi-
ronment is a key challenge for creating general
AI. Accomplishing this goal requires learning
to ground language in perception and embodied
actions, in order to accomplish complex tasks.
The Scalable, Instructable, Multiworld Agent
(SIMA) project tackles this by training agents
to follow free-form instructions across a diverse
range of virtual 3D environments, including
curated research environments as well as open-
ended, commercial video games. Our goal is to
develop an instructable agent that can accom-
plish anything a human can do in any simulated
3D environment. In this paper we describe our
motivation and goal, the initial progress we
have made, and promising preliminary results
on several diverse research environments and
various commercial video games.

1 Introduction

Despite the impressive capabilities of large lan-
guage models (Brown et al., 2020; Hoffmann et al.,
2022; OpenAI, 2023; Anil et al., 2023; Gemini
Team et al., 2023), connecting them to the em-
bodied world that we inhabit remains challenging.
However, if successful, language abstractions can
enable efficient learning and generalization (Hill
et al., 2020; Colas et al., 2020; Lampinen et al.,
2022; Tam et al., 2022; Hu and Clune, 2023). Once
learned, language can unlock planning, reasoning
(e.g., Huang et al., 2022; Brohan et al., 2023b;
Driess et al., 2023; Kim et al., 2023), and communi-
cation (Zeng et al., 2022) about grounded situations
and tasks. In turn, grounding language in rich envi-
ronments can make a system’s understanding of the
language itself more systematic and generalizable
(Hill et al., 2019).

The Scalable, Instructable, Multiworld Agent
(SIMA) project aims to build a system that can fol-
low arbitrary language instructions to act in any vir-

tual 3D environment via keyboard-and-mouse ac-
tions — from custom-built research environments
to a broad range of commercial video games. There
is a long history of research in creating agents
that can interact with video games or simulated
3D environments (e.g., Mnih et al., 2015; Berner
et al., 2019; Vinyals et al., 2019; Baker et al., 2022)
and even follow language instructions in a limited
range of environments (e.g., Abramson et al., 2020;
Lifshitz et al., 2023). In SIMA, however, we are
drawing inspiration from the lesson of large lan-
guage models that training on a broad distribution
of data is the most effective way to make progress
in general AI (e.g., Brown et al., 2020; Hoffmann
et al., 2022; OpenAI, 2023; Anil et al., 2023; Gem-
ini Team et al., 2023). Thus, in contrast to prior
works (e.g., Abramson et al., 2020; Vinyals et al.,
2019; Berner et al., 2019; Lifshitz et al., 2023), we
are attempting to tackle this problem across many
simulated environments, in the most general and
scalable way possible, by making few assumptions
beyond interacting with the environments in the
same way as humans do.

In the SIMA project thus far, we have created an
agent that performs short-horizon tasks based on
language instructions produced by a user; though
instructions could also be produced by a language
model (e.g., Jiang et al., 2019; Driess et al., 2023;
Wang et al., 2023b; Hu et al., 2023; Ajay et al.,
2023). This paper summarises the high-level ap-
proach of Sima and our initial progress towards the
ultimate goal: developing a language instructable
agent that can accomplish anything a human can
do in any simulated 3D environment.

Related Work SIMA builds on numerous prior
works that have explored creating video-game play-
ing agents (Mnih et al., 2015; Wang et al., 2023a;
Pearce and Zhu, 2022; Baker et al., 2022), and other
works that have created language agents in virtual
environments (Hermann et al., 2017; Abramson



et al., 2020, 2022a). There has also been a growing
interest in creating generalist agents across envi-
ronments (Reed et al., 2022), generalist robotics
policies (Brohan et al., 2022, 2023b), and more.
See Appendix B for a detailed discussion of how
our work builds upon and relates to prior efforts.

2 Approach

Many overlapping areas of previous and concurrent
work share some of our philosophy, motivations,
and approaches. What distinguishes the SIMA
project is our focus on language-conditional be-
havior across a diverse range of visually and me-
chanically complex simulated environments that
afford a rich set of skills. In this section, we pro-
vide a high-level overview of our approach: our
environments, data, agents, and evaluations.

2.1 Environments
SIMA aims to ground language across many rich
3D environments (see Figure 1). We selected 3D
embodied environments that offer a broad range
of open-ended interactions — such environments
afford the possibility of rich and deep language
interactions. We focus on environments that are
either in a) first-person or b) third-person with the
camera over the player’s shoulder. To achieve di-
versity and depth of experience, we use a variety
of commercial video games, such as Goat Simu-
lator 3, Hydroneer, No Man’s Sky, Satisfactory,
Teardown, Valheim and Wobbly Life, as well as
several research environments created specifically
for agent research, such as Playhouse, ProcTHOR,
WorldLab and Construction Lab. For a description
of each game or environment used, see Appendices
C & D.

2.2 Data
Our approach relies on training agents at scale via
behavioral cloning, i.e., supervised learning of the
mapping from observations to actions on data gen-
erated by humans. Thus, a major focus of our effort
is on collecting and incorporating gameplay data
from human experts. This includes videos, lan-
guage instructions and dialogue, recorded actions,
and various annotations such as descriptions or
marks of success or failure. These data constitute
a rich, multi-modal dataset of embodied interac-
tion within over 10 simulated environments, with
more to come.1 Our data can be used to augment

1Note: Due to a limited amount of collected data and/or
evaluations, we present agent evaluation results (Section 3) on

and leverage existing training data (e.g., Abram-
son et al., 2020), or to fine-tune pretrained models
to endow them with more situated understanding.
These datasets cover a broad range of instructed
tasks. For the details see Figure 9 that shows a hier-
archical clustering of the text instructions present in
the data within a fixed, pretrained word embedding
space. We collect data using a variety of methods,
including allowing single players to freely play, and
then annotating these trajectories with instructions
post-hoc. We also perform two-player setter-solver
collections (Abramson et al., 2020; DeepMind In-
teractive Agents Team et al., 2021), in which one
player instructs another what to do in selected sce-
narios while sharing a single player view in order
to match the single-player collections.

2.3 Agent

The SIMA agent maps visual observations and lan-
guage instructions to keyboard-and-mouse actions
(Figure 2). Given the complexity of this under-
taking — such as the high dimensionality of the
input and output spaces, and the breadth of pos-
sible instructions over long timescales — we pre-
dominantly focus on training the agent to perform
instructions that can be completed in less than ap-
proximately 10 seconds. Breaking tasks into sim-
pler sub-tasks enables their reuse across different
settings and entirely different environments, given
an appropriate sequence of instructions from the
user.

Our agent architecture builds on prior related
work (Abramson et al., 2020, 2022a), but with
various changes and adaptations to our more gen-
eral goals. Our agent incorporates several pre-
trained models — including a 400M parameter
model trained on fine-grained image-text align-
ment, SPARC (Bica et al., 2024), and a 1.1B pa-
rameter video prediction model, Phenaki (Villegas
et al., 2022) — which we further fine-tune on our
data through behavioral cloning and video predic-
tion, respectively. Our agent (Figure 2) utilizes
trained-from-scratch transformers that cross-attend
to the different pretrained vision components, the
encoded language instruction, and a Transformer-
XL (Dai et al., 2019) that attends to past memory
states to construct a state representation. The re-
sulting state representation is provided as input to a
policy network that produces keyboard-and-mouse
actions for sequences of 8 actions. We train this

a subset of 7 of these environments.
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Figure 1: Environments. We use over ten 3D environments in SIMA, consisting of commercial video games and
research environments. Commercial video games offer a higher degree of rich interactions and visual fidelity, while
research environments serve as a useful testbed for probing agent capabilities.
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Figure 2: Setup & SIMA Agent Architecture. The SIMA agent receives language instructions from a user and
image observations from the environment, and maps them to keyboard-and-mouse actions.

agent with behavioral cloning, as well as an auxil-
iary objective of predicting goal completion.

We use Classifier-Free Guidance (CFG; Ho and
Salimans, 2022; Lifshitz et al., 2023) to improve
the language-conditionality of a trained agent when
running it in an environment. CFG was originally
proposed for strengthening text-conditioning in dif-
fusion models (Ho and Salimans, 2022), but has
also proven useful for similar purposes with lan-
guage models (Sanchez et al., 2023) and language-
conditioned agents (Lifshitz et al., 2023). That is,
we compute the policy, π, with and without lan-
guage conditioning, and shift the policy logits in
the direction of the difference between the two:

πCFG = π (img, lang)

+ λ (π (img, lang)− π (img, ·))

2.4 Evaluation methods
Our focus on generality in SIMA introduces chal-
lenges for evaluation. While research environ-
ments may provide automated methods for assess-
ing whether language-following tasks have been
successfully completed, such success criteria may
not be generally available. Additionally, video
game evaluations cannot rely on access to privi-
leged information about environment state.

Ground-truth Our internally-developed re-
search environments (Construction Lab, Playhouse,
and WorldLab) are capable of providing ground-
truth assessments of whether language-following
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Figure 3: Average Success Rate of the SIMA Agent by Environment. Agents achieve notable success, but are
far from perfect; their success rates vary by environment. Colors indicate the evaluation method(s) used to assess
performance for that environment. (Note that humans would also find some of these tasks challenging, and thus
human-level performance would not be 100%, see Section 3.3.)
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Figure 4: Average Success Rate of the SIMA Agent by Skill Category. Agents exhibit varying degrees of
performance across the diverse skills that we evaluate, performing some skills reliably and others with more limited
success. Skill categories are grouped into clusters (color), which are derived from our evaluation tasks.

tasks have been successfully completed. These
tasks can depend on the state of the agent (“move
forward”) and the surrounding environment
(“lift the green cube”), as well as more complex
interactions (“attach a connector point to the top
of the large block” ). Such tasks enable robust
testing of a range of particular skills, with a highly
reliable signal of task success.

Optical character recognition (OCR) Many of
our commercial video game environments provide
on-screen text signalling the completion of tasks
or quests, or even the results of lower-level actions
like collecting resources or entering certain areas
of a game. By detecting on-screen text using OCR
in pre-defined evaluation scenarios, sometimes in
combination with detecting specific keyboard-and-

mouse actions, we can cheaply assess whether the
agent has successfully performed particular tasks.
This form of automated evaluation also avoids the
subjectivity of human evaluations. We make use
of OCR evaluation in particular for two games,
No Man’s Sky and Valheim, which both feature a
significant amount of on-screen text.

Human evaluation In the many cases where we
cannot automatically derive a signal of task suc-
cess, we turn to humans to provide this assessment.
We curated our human-evaluation tasks by identify-
ing a list of frequently-occurring verbs in English,
and combined it with a list of verbs that naturally
emerged from gameplay and interactive testing of
our agents. We use this verb list as a foundation for
our evaluations across all video game environments.



We assign each task (save state and instruction pair)
to a single, most-representative skill category (e.g.
“craft items”) even though most tasks require a wide
range of implicit skills to succeed (e.g. crafting of-
ten requires menu use). The resulting evaluation set
provides a long term challenge for agent research
that spans a wide range of difficulties. Grounding
our evaluation framework in the distribution of nat-
ural language allows us to test our agents in both
common and adversarial scenarios, and thereby to
measure our progress towards our long-term goal
of developing an instructable agent that can accom-
plish anything a human can do in any simulated 3D
environment.

In the results below (Section 3), we primarily
report evaluation scores based on ground-truth eval-
uations for research environments and combined
OCR and human evaluations for commercial video
game environments. Across the 7 environments for
which we have evaluations, we have a total of 1,485
unique tasks, spanning a range of 9 skill categories,
from movement (“go ahead”, “look up”, “jump”)
to navigation (“go to the HUB terminal”, “go to
your ship”), resource gathering (“collect carbon”,

“get raspberries”), object management (“use the
analysis visor”, “cut the potato”), and more.

3 Initial results

In this section, we report initial evaluation results
of the SIMA agent. We start by considering the
quantitative performance of the SIMA agent, bro-
ken down by environment and skill category. We
then compare these results with several baselines
and ablations, allowing us to assess the general-
ization capabilities of the agent and the efficacy
of our design choices. Finally, we investigate a
subset of evaluation tasks to estimate human-level
performance as an additional comparison.

3.1 Performance across environments and
skills

In Figure 3, we report the average performance of
the SIMA agent across 7 environments for which
we have quantitative evaluations. Averages are
calculated across multiple episodes per task (in re-
search environments, one episode per task in video
games), multiple tasks per environment, and across
three training runs with different random seeds.
The SIMA agent was evaluated after having been
trained for 1.2 million training steps. Overall, the
results show that the SIMA agent is able to com-

plete a range of tasks across many environments,
but there remains substantial room for improve-
ment. Performance is better for Playhouse and
WorldLab and lower for more complex commercial
video game environments. Notably, performance
on Construction Lab is lower as well, highlighting
the relative difficulty of this research environment
and its evaluation tasks. This enables the SIMA
platform to serve as a useful testbed for further de-
velopment of agents that can connect language to
perception and action.

In order to better understand the performance
of the SIMA agent across an increasing variety of
simulated environments, we developed an evalua-
tion framework grounded in natural language for
adding and clustering evaluation tasks, as detailed
in our evaluation methods. As these skill clusters
are derived from our evaluation tasks rather than
the training data, they are similar to, yet distinct
from, those in Figure 9. As shown in Figure 4,
performance varies across different skill categories,
including within skill clusters such as “movement”
or “game progression”.

3.2 Evaluating environment generalization &
ablations

We compare our main SIMA agent to various base-
lines and ablations, both in aggregate (Figure 5) and
broken down across our environments (Figure 6).
The agents we report across all environments in-
clude:

• SIMA: Our main SIMA agent, which is
trained across all environments except for Hy-
droneer and Wobbly Life, which we use for
qualitative zero-shot evaluation.

• Zero-shot: Separate SIMA agents trained like
the main agent, but only on N − 1 of our en-
vironments, and evaluated zero-shot on the
held-out environment — that is, without train-
ing on it. These agents assess the transfer
ability of our agent in a controlled setting.

• No pretraining ablation: An agent without
the pretrained encoders. We replaced these
models with a ResNet vision model that is
trained from scratch (as in Abramson et al.,
2022a). Comparing to this agent tests the ben-
efits of pretrained models for agent perfor-
mance.

• No language ablation: An agent that lacks
language inputs, during training as well as
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Figure 5: Aggregate Relative Performance. Bars indicate the performance of the SIMA agent as well as the
baselines and ablations relative to the performance of the environment-specialized agents, aggregated equally across
environments. The SIMA agent outperforms ablations that do not incorporate internet pretraining and substantially
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Figure 6: Per-Environment Relative Performance. Bars indicate the performance of the SIMA agent as well
as the baselines and ablations relative to the performance of the environment-specialized agents. Our agent can
achieve non-trivial performance — almost always outperforming the no-language ablation, and in some cases even
matching or exceeding environment-specialized agent performance.

evaluation. Comparing to this agent shows
the degree to which our agent’s performance
can be explained by simple language-agnostic
behavioral priors.

• Environment-specialized: We additionally
train an expert agent on each environment,
which is trained only on data corresponding to
that environment, but still includes the more
broadly pretrained encoders. We normalize
the performance of all other agents by the ex-
pert agent on each environment, as a measure
of what is possible using our methods and the
data we have for that environment.

Note that due to the number of comparison
agents, we only ran a single seed for each of the
ablation agent, rather than the three seeds used for
the main SIMA agent. Each agent is evaluated after

1.2 million training steps.2 The bars in Figure 5
and Figure 6 represent average performance (nor-
malized relative to the environment-specialist); the
errorbars are parametric 95%-CIs across tasks and
seeds (where multiple seeds are available).

Figure 5 shows a summary of our results, while
Figure 6 shows the results by environment. SIMA
outperforms environment-specialized agents over-
all (67% average improvement over environment-
specialized agent performance), thus demonstrat-

2With one exception: as we had a relatively small quantity
of data for Goat Simulator 3, we attempted to prevent the
environment-specialized baseline from overfitting by evalu-
ating it every 200,000 training steps, then selecting the best
performing number of steps, which was 400,000 steps, as
our environment-specialized baseline. Although this is a bi-
ased selection process, because we are using the environment-
specialized agent as a baseline, it will only lead to underesti-
mating the advantage of SIMA.
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Figure 8: Comparison with Human Performance on No Man’s Sky. Evaluating on a subset of tasks from No
Man’s Sky, human game experts outperform all agents. Yet, humans only achieve 60% success on this evaluation.
This highlights the difficulty of the tasks considered in this project.

ing positive transfer across environments. We
statistically quantify this benefit by using a per-
mutation test on the mean difference across the
per-task performance of the SIMA agent and the
environment-specialized agent within each domain;
SIMA significantly outperforms the environment-
specialized agent in every test. It also outperforms
the no-pretraining baseline overall (permutation
test p < 0.001), thus showing that internet-scale
knowledge supports grounded learning. Finally,
the no-language ablation performs very poorly (all
permutation tests p < 0.001). Importantly, this
demonstrates not only that our agent is in fact us-
ing language, but also that our evaluation tasks are
effectively designed to test this capability, rather
than being solvable by simply executing plausible
behaviors.

The zero-shot evaluations are also promising.
Zero-shot agents are capable of performing generic
navigation skills that appear across many games
(e.g. “go down the hill”), and show some more
complex abilities like grabbing an object by its
color, using the fact that color is consistent across
games, and the consistent pattern that most games
use left mouse to grab or interact with objects.

Finally, Figure 7 compares the performance of
agents with and without classifier-free guidance
(CFG; Lifshitz et al., 2023), evaluated on a subset
of our research environments: Construction Lab,
Playhouse, and WorldLab. Without CFG (λ = 0),
the SIMA agent performs noticeably worse. How-
ever, the No CFG agent still exhibits a high de-
gree of language conditionality, significantly out-
performing the No Language baseline. These re-
sults show the benefit of CFG, highlighting the
impact that inference-time interventions can have
on agent controllability.

3.3 Human comparison

To provide an additional baseline comparison, we
evaluated our agents against expert human perfor-
mance on an additional set of tasks from No Man’s
Sky, which were chosen to test a focused set of
skills in a diverse range of settings. Results are
summarized in Figure 8 with error bars denoting
parametric 95%-CIs. The human players achieved
a success rate of only 60% on these tasks, demon-
strating the difficulty of the tasks we considered
in this project and the stringency of our evaluation
criteria. The SIMA agent achieved non-trivial per-
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formance (34% success), far exceeding that of the
No Language baseline (11% success), for example.
We note that 100% success may not necessarily be
achievable, due to disagreement between human
judges on more ambiguous tasks. This underscores
the utility of the entire SIMA setup for providing
a challenging, yet informative, metric for assess-
ing grounded language interactions in embodied
agents.

4 Looking ahead

SIMA is a work in progress. In this paper, we have
described our goal and philosophy, and presented
some preliminary results showing our agent’s abil-
ity to ground language instructions in behavior
across a variety of rich 3D environments. We see
notable performance and early signs of transfer
across environments, as well as zero-shot trans-
fer of basic skills to held-out environments. In
our future work, we aim to a) scale to more en-

vironments and datasets by continuing to expand
our portfolio of games, environments, and datasets;
b) increase the robustness and controllability of
agents; c) leverage increasingly high-quality pre-
trained models; and d) develop more comprehen-
sive and carefully controlled evaluations.

We believe that by doing so, we will make
SIMA an ideal platform for doing cutting-edge re-
search on grounding language and pretrained mod-
els safely in complex environments, thereby help-
ing to tackle a fundamental challenge of AGI. Our
research also has the potential to enrich the learn-
ing experiences and deployment environments of
future foundation models; one of our goals is to
ground the abstract capabilities of large language
models in embodied environments. We hope that
SIMA will help us learn how to overcome the fun-
damental challenge of linking language to percep-
tion and action at scale, and we are excited to share
more details about our research in the future.
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B Related work

SIMA builds on a long history of using games as a
platform for AI research. For example, backgam-
mon provided the initial proving ground for early
deep reinforcement learning methods (Tesauro
et al., 1995), and later works have achieved super-
human performance even in complex board games
like Go (Silver et al., 2016, 2018).

Video games Over the last ten years, video
games have provided an increasingly important
setting for research focused on embodied agents
that perform visuomotor control in rich environ-
ments, covering a wide spectrum from Atari (Belle-

mare et al., 2013) to DoTA (Berner et al., 2019)
and StarCraft II (Vinyals et al., 2019). In SIMA,
however, we restrict our focus to games that re-
semble 3D physical embodiment most closely, in
particular games where the player interacts with a
3D world from a first or over-the-shoulder pseudo-
first-person view. This focus excludes many of
the games which have previously been used for
research, such as the ones listed above. There has
however been notable interest in first-person em-
bodied video games as a platform for AI research
(Johnson et al., 2016; Tessler et al., 2017; Guss
et al., 2019; Pearce and Zhu, 2022; Hafner et al.,
2023; Durante et al., 2024; Tan et al., 2024). These
video game AI projects have driven the develop-
ment of many innovative techniques, e.g., learning
from videos by annotating them with estimated
player keyboard-and-mouse actions using inverse
dynamics models (Pearce and Zhu, 2022; Baker
et al., 2022). Recently, games that offer API ac-
cess to the environment have served as a platform
for grounding large language models (Wang et al.,
2023a), and some works have even considered
grounding a language model in a game through
direct perception and action of a lower-level con-
troller (Wang et al., 2023b). Instead of focusing
on a single game or environment, however, SIMA
considers a range of diverse games to train agents
on a larger variety of content.

Research environments Other works have fo-
cused on custom, controlled environments designed
for research. Many of these environments focus on
particular domains of real-world knowledge. For
example, AI2-THOR (Kolve et al., 2017), Virtu-
alHome (Puig et al., 2018), ProcTHOR (Deitke
et al., 2022), AI Habitat (Savva et al., 2019; Szot
et al., 2021; Puig et al., 2023), ALFRED (Shridhar
et al., 2020), and Behavior (Srivastava et al., 2021)
simulate embodied agents behaving in naturalistic
rendered scenes. CARLA (Dosovitskiy et al., 2017)
provides a simulator for autonomous driving. Mu-
JoCo (Todorov et al., 2012), PyBullet (Coumans
and Bai, 2016), and Isaac Gym (Makoviychuk
et al., 2021) provide high quality physics simu-
lators for learning low-level control and are used
by benchmarks for robotic manipulation such as
Meta-World (Yu et al., 2020) and Ravens (Zeng
et al., 2021). Albrecht et al. (2022) propose a uni-
fied environment encompassing a variety of skills
afforded through ecologically-inspired interactions.
The Playhouse (Abramson et al., 2020; DeepMind



Interactive Agents Team et al., 2021; Abramson
et al., 2022a) and WorldLab (e.g., Gulcehre et al.,
2019) environments are built using Unity (see Ward
et al., 2020). Open Ended Learning Team et al.
(2021) and Adaptive Agent Team et al. (2023) also
use Unity to instantiate a broad distribution of pro-
cedurally generated tasks with shared underlying
principles. For the results in this work, we also
use Playhouse, WorldLab, and ProcTHOR. In ad-
dition, we introduce a new environment, called the
Construction Lab.

Robotics Robotics is a key area for research
in embodied intelligence. A variety of robotics
projects have used simulations for training, to trans-
fer efficiently to real-world robotic deployments
(Höfer et al., 2021), though generally within a sin-
gle, constrained setting. More recent work has fo-
cused on environment-generality, including scaling
robotic learning datasets across multiple tasks and
embodiments (Brohan et al., 2022, 2023a; Stone
et al., 2023; Padalkar et al., 2023) — thereby creat-
ing Vision-Language-Action (VLA) models (Bro-
han et al., 2023a), similar to the SIMA agent. The
latter challenge of generalizing or quickly adapt-
ing to new embodiments has some parallels to act-
ing in a new 3D environment or computer game
where the mechanics are different. Moreover, a
variety of recent works have applied pretrained
(vision-)language models as a planner for a lower-
level instruction-conditional robotic control policy
(Brohan et al., 2023b; Driess et al., 2023; Vem-
prala et al., 2023; Hu et al., 2023). Our approach
shares a similar philosophy to the many works that
attempt to ground language via robotics. SIMA,
however, avoids the additional challenges of costly
hardware requirements, resource-intensive data col-
lection, and the practical limitations on diversity
of real-world evaluation settings. Instead, SIMA
makes progress towards embodied AI by leverag-
ing many simulated environments and commercial
video games to obtain the sufficient breadth and
richness that we conjecture to be necessary for ef-
fectively scaling embodied agents — with the hope
that lessons learned (and possibly even the agents
themselves) will be applicable to robotic embodi-
ments in the future.

Learning environment models Some works at-
tempt to leverage learned models of environments
to train agents in these learned simulations (e.g., Ha
and Schmidhuber, 2018; Hafner et al., 2020, 2023;
Yang et al., 2023). These methods, however, tend to

be difficult to scale to diverse sets of visually com-
plex environments that need to be self-consistent
across long periods of time. Nevertheless, learning
imperfect models can still be valuable. In SIMA,
we build on video models (Villegas et al., 2022),
which we fine-tune on game environments. How-
ever, we only use the internal state representations
of the video models rather than explicit rollouts —
in keeping with other approaches that use gener-
ative modeling as an objective function for learn-
ing state representations (e.g., Gregor et al., 2019;
Zolna et al., 2024).

Grounding language Another stream of work
— overlapping with those above — has focused
on grounding language in simulated 3D environ-
ments, through agents that are trained in controlled
settings with semi-natural synthetic language (Her-
mann et al., 2017; Hill et al., 2019), or by imitating
human interactions in a virtual house to learn a
broader ability to follow natural language instruc-
tions (Abramson et al., 2020; DeepMind Interac-
tive Agents Team et al., 2021; Abramson et al.,
2022a,b). Moreover, a range of recent works de-
velop agents that connect language to embodied
action, generally as part of a hierarchy controlled
by a language model (Jiang et al., 2019; Driess
et al., 2023; Wang et al., 2023b; Hu et al., 2023;
Ajay et al., 2023). We likewise draw inspiration
from the idea that language is an ideal interface for
directing an agent, but extend our scope beyond the
limited affordances of a single controlled environ-
ment. In that sense, SIMA overlaps more with sev-
eral recent works (Reed et al., 2022; Huang et al.,
2023; Durante et al., 2024) that also explore train-
ing a single model to perform a broad range of tasks
involving actions, vision, and language. However,
SIMA is distinct in our focus on simultaneously (1)
taking a language-first perspective, with all training
experiences being language-driven; (2) adopting a
unified, human-like interface across environments
with language and vision to keyboard-and-mouse
control; and (3) exploring a broad range of visually
rich, diverse, and human-compatible environments
that afford a wide range of complex skills.

Language supports grounded learning, and
grounded learning supports language A key
motivation of SIMA is the idea that learning lan-
guage and learning about environments are mutu-
ally reinforcing. A variety of studies have found
that even when language is not necessary for solv-
ing a task, learning language can help agents to



learn generalizable representations and abstrac-
tions, or to learn more efficiently. Language ab-
stractions can accelerate grounded learning, for
example accelerating novelty-based exploration in
reinforcement learning by providing better state
abstractions (Tam et al., 2022; Mu et al., 2022),
or composing known goals into new ones (Colas
et al., 2020; Nottingham et al., 2023). Moreover,
learning to predict natural-language explanations
(Lampinen et al., 2022), descriptions (Kumar et al.,
2022), or plans (Hu and Clune, 2023) can help
agents to learn more efficiently, and to general-
ize better out of distribution. Language may be a
powerful tool for shaping agent capabilities (Colas
et al., 2022).

Conversely, richly grounded learning can also
support language learning. Since human language
use is deeply integrated with our understanding of
grounded situations (McClelland et al., 2020), un-
derstanding the subtleties of human language will
likely benefit from this grounding. Beyond this the-
oretical argument, empirical evidence shows that
grounding can support even fundamental kinds of
generalization — Hill et al. (2019) show that agents
grounded in richer, more-embodied environments
exhibit more systematic compositional generaliza-
tion. These findings motivate the possibility that
learning both language and its grounding will not
only improve grounded actions, but improve a sys-
tem’s knowledge of language itself.

C Commercial video games portfolio

Goat Simulator 3: A third-person game where
the player is a goat in a world with exaggerated
physics. The player can complete quests, most of
which involve wreaking havoc. The goat is able to
lick, headbutt, climb, drive, equip a wide range of
visual and functional items, and perform various
other actions. Throughout the course of the game,
the goat unlocks new abilities, such as the ability
to fly.

Hydroneer: A first-person mining and base
building sandbox where the player is tasked with
digging for gold and other resources to turn a profit
and enhance their mining operation. To do this,
they must build and upgrade their set-ups and in-
crease the complexity and levels of automation
until they have a fully automated mining system.
Players can also complete quests from non-player
characters to craft bespoke objects and gain extra
money. Hydroneer requires careful planning and

managing of resources.
No Man’s Sky: A first- or third-person survival

game where the player seeks to explore a galaxy
full of procedurally-generated planets. This in-
volves flying between planets to gather resources,
trade, build bases, and craft items that are needed to
upgrade their equipment and spaceship while sur-
viving a hazardous environment. No Man’s Sky in-
cludes a large amount of visual diversity — which
poses important challenges for agent perception —
and rich interactions and skills.

Satisfactory: A first-person, open-world explo-
ration and factory building game, in which play-
ers attempt to build a space elevator on an alien
planet. This requires building increasingly com-
plex production chains to extract natural resources
and convert them into industrial goods, tools, and
structures — whilst navigating increasingly hostile
areas of a large open environment.

Teardown: A first-person, sandbox–puzzle
game in a fully destructible voxel world where play-
ers are tasked with completing heists to gain money,
acquiring better tools, and undertaking even more
high-risk heists. Each heist is a unique scenario in
one of a variety of locations where players must
assess the situation, plan the execution of their mis-
sion, avoid triggering alarms, and escape before a
timer expires. Teardown involves planning and us-
ing the environment to one’s advantage to complete
the tasks with precision and speed.

Valheim: A third-person survival and sandbox
game in a world inspired by Norse mythology.
Players must explore various biomes, gather re-
sources, hunt animals, build shelter, craft equip-
ment, sail the oceans and defeat mythological mon-
sters to advance in the game — while surviving
challenges like hunger and cold.

Wobbly Life: A third-person, open-world sand-
box game where the player can explore the world,
unlock secrets, and complete various jobs to earn
money and buy items, leading up to buying their
own house. They must complete these jobs whilst
contending with the rag-doll physics of their char-
acters and competing against the clock. The jobs
require timing, planning, and precision to be com-
pleted. The world is extensive and varied, with a
diverse range of interactive objects.

D Research environments portfolio

Construction Lab: A new research environment
where agents need to build novel items and sculp-



tures from interconnecting building blocks, includ-
ing ramps to climb, bridges to cross, and dynamic
contraptions. Construction Lab focuses on cogni-
tive capabilities such as object manipulation and
an intuitive understanding of the physical world.

Playhouse: An environment consisting of a
procedurally-generated house environment with
various objects. We have augmented this environ-
ment with improved graphics and richer interac-
tions, including skills like cooking or painting.

ProcTHOR: An environment consisting of
procedurally-generated rooms with realistic con-
tents, such as offices and libraries. Although bench-
mark task sets exist in this environment, prior
works have not used keyboard and mouse actions
for agents; thus we focus on this environment pri-
marily for data collection rather than evaluation.

WorldLab: An environment further specialized
for testing embodied agents by using a limited
set of intuitive mechanics, such as sensors and
doors, and relying primarily on the use of simu-
lated physics on a range of objects.
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