Challenges in Explainability and Knowledge Extraction

Daiki Kimura Tsunehiko Tanaka †∗ Michiaki Tatsubori Asim Munawar
IBM Research, †Waseda University
daiki@jp.ibm.com

Abstract

Since text-based games are one of the most challenging problems and require to have an understanding of language and decision-making in a complex environment, there are many studies about applying deep reinforcement learning methods. However, these deep models are often black-box which means the human operator cannot understand the trained rules. And the models use external knowledge such as common-sense knowledge from well-designed data. In this paper, we explain some challenges in text-based games.

1 Introduction

Text-based games (Côté et al., 2018; Hausknecht et al., 2019; Keerthiram Murugesan and Campbell, 2021) are appropriate test-bed for tackling various challenges in reinforcement learning and natural language processing. There are some methods which solve various challenges. LSTM-DQN (Narasimhan et al., 2015) is a study on an LSTM-based encoder for feature extraction from observation and Q-learning for action policy. LSTM-DQN++ (Yuan et al., 2018) extended the exploration and LSTM-DRQN was proposed for adding memory units in the action scorer. KG-DQN (Ammanabrolu and Riedl, 2019) and GATA (Adhikari et al., 2020) extended the language understanding. LeDeepChef (Adolfs and Hofmann, 2020) used recurrent feature extraction along with the A2C (Mnih et al., 2016). CREST (Chaudhury et al., 2020) was proposed for pruning observation information. These methods tackled to solve the game by purely deep methods.

Recently, some studies (Kimura et al., 2021b; Chaudhury et al., 2021; Kimura et al., 2021a) introduced symbolic reasoning to train logical rules in a recent neuro-symbolic framework called the Logical Neural Network (LNN) (Riegel et al., 2020) has been proposed to simultaneously provide key properties of both the neural network (learning) and the symbolic logic (reasoning). FOL-LNN (Kimura et al., 2021b) introduced training of first-order logic for increasing the training speed and interpretability. SLATE (Chaudhury et al., 2021) proposed interpretable action policy rules from symbolic abstractions of textual observations for improved generalization. LOA (Kimura et al., 2021a) is an open-source code for neuro-symbolic reinforcement learning method. However, we still cannot interact to edit the logical rules.

On the other hand, there are some studies (Keerthiram Murugesan and Campbell, 2021; Tanaka et al., 2022) about introducing the common-sense knowledge as external knowledge. TWC (Keerthiram Murugesan and Campbell, 2021) is proposed as a test-bed game for using the common-sense knowledge in text-based game. We (Tanaka et al., 2022) proposed a method just uses common-sense knowledge from scene graph dataset. However, we still cannot utilize the external knowledge from large data.

In this paper, we explain challenges in explainability and knowledge extraction.

2 Challenges

2.1 Explainability

We shows a web-based interactive UI for playing the text-based game, and visualizes the trained logical rules in LNN (Kimura et al., 2021a). They recently shared a new demo UI for easily understanding at the github repository 1. However, it is just showing the trained knowledge.

We are thinking that there is a challenge to realize an interactive interface with a human operator for solving text-based games informatively. For example, the human operator can see the reasons (such as why the agent takes “put a used tissue into

1https://github.com/IBM/nesa-demo
pedal bin” action) for trained rules, and interact to edit the acquired rules during the execution of reinforcement learning. These functions will give hints on how to operate the agent in the environment, and understanding the agent behavior.

2.2 Knowledge Extraction

We introduced scene graph datasets as external knowledge with abstraction levels close to actual tasks (Tanaka et al., 2022). However, it missed some valid common-senses and failed to deal noise.

We believe that a challenge is to extract noiseless common-sense knowledge by understanding meaning of word, and use the extracted common-sense to be accurately linked to tasks. Specifically, since scene graph dataset has common-sense knowledge that is not relevant to tasks, the model should prune in the pre-processing of encoding common-sense. It is also necessary clearly indicate which common-sense should be used for which task because the amount of common-sense is enormous.

3 Conclusion

We discuss the challenges in explainability and knowledge extraction for text-based games.

References

